. 24/7 Space News .
MILTECH
Improved thermal-shock resistance in industrial ceramics
by Staff Writers
Washington DC (SPX) Aug 22, 2018

At high temperatures, ceramics are susceptible to thermal-shock fractures caused by rapid temperature-changing events, such as cold water droplet contact with hot surfaces. In a novel interdisciplinary approach, engineers at the University of New Mexico report in AIP Advances the use of a cheap, simple, water-repelling coating to prevent thermal shock in ceramics. These are snapshots of hot surface and cold droplet interaction at 3 milliseconds at 300 degrees Celsius: (a) on as-received alumina ceramics and (b) on an engineered hydrophobic surface.

Ceramic materials are used in nuclear, chemical and electrical power generation industries because of their ability to withstand extreme environments. However, at high temperatures, ceramics are susceptible to thermal-shock fractures caused by rapid temperature-changing events, such as cold water droplet contact with hot surfaces.

In a novel interdisciplinary approach, engineers at the University of New Mexico report in AIP Advances, from AIP Publishing, the use of a cheap, simple, water-repelling coating to prevent thermal shock in ceramics.

"We use exactly the same material but control the heat transfer, allowing the material to see a more benign temperature gradient, alleviating tensile stresses and so radically improving thermal shock behavior," said Youho Lee, at the University of New Mexico and one of the authors of the paper.

Thermal shock is a phenomenon often experienced in the kitchen by novice cooks unaware of the susceptibility of glass to dramatic temperature changes. If a glass casserole dish fresh from the heat of the oven is blasted with cold water, the sudden decrease in surface temperature creates an uneven temperature gradient across the material, causing tensile stresses and ultimately cracks. This same thermal-shock susceptibility impacts the lifetime of industrial ceramics.

Lee explained that in previous attempts to improve thermal-shock resistance, materials scientists changed properties of the material itself, but this is an expensive and difficult process with inherent drawbacks. "If you improve the material in one way, you sacrifice other properties," Lee said.

From his interdisciplinary academic background, Lee had experience investigating heat transfer and so he decided to explore the effect of heat transfer on ceramic thermal shock.

Heat transfer was examined by taking high-speed videos of water droplet impact upon a heated ceramic surface. "When heat transfer is fast, the collision moments are characterized by violent bubbles and jets on the surface," Lee said. And, these faster heat-transfer modes were found to correspond to a reduction in material strength, as assessed in bending tests.

A greater reduction in material strength was found when the ceramic was heated up to 325 degrees Celsius, with correspondingly more dramatic droplet dynamics, indicating faster heat transfer. However, at temperatures higher than 325 C, material strength appeared less affected by heat shock, and droplet dynamics changed to form an appreciable vapor film.

To reduce the heat transfer, and hence thermal shock experienced by ceramics at temperatures ranging up to 325 C, Lee used some nuclear engineering know-how - that is, a two-phase heat-transfer rate can be reduced by repelling water from the surface to form an insulating vapor film. T

herefore, he coated the ceramic surface with nanoparticles, creating a nanostructured, hydrophobic surface. When experiments were repeated on the newly coated ceramic material, droplet dynamics were dramatically changed, with no violent jets of bubbles; instead, vapor film formation was observed. Crucially, the coated ceramics exhibited no alteration in strength after droplet impingement.

"What we did was very simple, with no expensive, fancy equipment or materials," Lee said. "The innovation of this study was to prevent dramatic heat transfer by promoting the vapor film formation, which insulated the material from thermal shock."

From his nuclear engineering perspective, Lee envisions that these findings can be used to improve nuclear power plant safety by increasing the thermal-shock tolerance of nuclear components. But this insulating coating is not limited to nuclear applications and can be applied to any ceramic material used in industries operating at high temperatures.

Lee also sees an additional benefit from the correlation between heat-transfer mode and material ceramic strength change, and thinks that this ceramic "memory" could be used in heat-transfer detection.

"In many engineering applications it is hard to install a high-speed video camera to assess heat transfer," Lee said. "However, you can use a ceramic material for an application that, for instance, requires a high-pressure chamber; its strength afterward can be used as a measure of heat transfer."

Research Report: "Heat transfer foot print on ceramics after thermal shock with droplet impingement: Development of thermal shock tolerant material with hydrophobic surface"


Related Links
American Institute of Physics
The latest in Military Technology for the 21st century at SpaceWar.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


MILTECH
Chemring receives contract for Husky counter-IED systems
Washington (UPI) Aug 16, 2018
Chemring Sensors and Electronic Systems has received a $92.6 million contract from the U.S. Army for Husky Mounted Detection System systems and associated spare parts. Work locations and funding on the contract, announced Wednesday by the Department of Defense, will be determined with each individual order. The work is expected to be completed by August 2022. The Husky Mounted Detection System is designed to counter improvised explosive devices that give stand-off detection and location ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MILTECH
NASA Administrator Views SLS Progress During First Visit to Marshall

Goonhilly and Spacebit parpace to accelerate commercial space exploration through blockchain technology

Sierra Nevada Corporation completes key step for NASA's NextSTEP-2 study

NASA Administrator Plans to Meet With Russian Space Agency Chief in Near Future

MILTECH
Stennis Begins 5th Series of RS-25 Engine Tests

RS-25 Engine Tests Modernization Upgrades

Aerojet Rocketdyne Expands Solid Rocket Motor Center of Excellence at Arkansas Facility

Student Experiments Soar with Early Morning Launch from Wallops

MILTECH
Six Things About Opportunity'S Recovery Efforts

The Science Team Continues to Listen for Opportunity as Storm Diminishes

Planet-Encircling Dust Storm of Mars shows signs of slowing

Aerojet Rocketdyne delivers power generator for Mars 2020 Rover

MILTECH
China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

China solicits international cooperation experiments on space station

MILTECH
Three top Russian space industry execs held for 'fraud'

ISRO to launch GSAT-32 in Oct 2019 to replace GSAT-6A which went incommunicado days after launch

'We're at Beginning of New Phase of Utilizing Space For Peaceful Purposes'

NASA invests in concepts for a vibrant future commercial space economy

MILTECH
Army to test body armor made from spider silk

The 2-D form of tungsten ditelluride is full of surprises

UNH researchers find seed coats could lead to strong, tough, yet flexible materials

Physicists fight laser chaos with quantum chaos to improve laser performance

MILTECH
Scientists discovered organic acid in a protoplanetary disk

Iron and titanium in the atmosphere of exoplanet orbiting KELT-9

Ultrahot planets have starlike atmospheres

Magnetic fields can quash zonal jets deep in gas giants

MILTECH
Study helps solve mystery under Jupiter's coloured bands

Million fold increase in the power of waves near Jupiter's moon Ganymede

New Horizons team prepares for stellar occultation ahead of Ultima Thule flyby

High-Altitude Jovian Clouds









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.