. 24/7 Space News .
INTERNET SPACE
Image-based modeling
by Staff Writers
Norman OK (SPX) Jan 03, 2017


LEFT: Calculated shear stress (SS). RIGHT: Soft tis-sue is subtracted using image processing. Images represent a 0.62 mm x 0.91 mm x 0.62 mm volume. In these images gray scale represents the poly-L-lactic acid fiber-mesh scaffold of 30 micrometre diameter, green color marks individual cells, yellow is soft tissue and red is calcification. The "cool" color map represents the fluid-induced surface SS for physiologically-relevant stress levels of > 0.1 g/cm s^2. Image courtesy TECHNOLOGY. For a larger version of this image please go here.

A team of researchers from the New Jersey Institute of Technology (NJIT) in Newark, NJ in collaboration with their colleagues from the University of Oklahoma (OU) in Norman, OK have demonstrated a novel image-based simulation approach consisting of Bone Tissue Engineering (BTE) experiments, micro-Computed Tomography (CT) sample scanning, "Virtual Histology" image segmentation, and Lattice Boltzmann Method (LBM) fluid dynamics which results in realistic simulations of BTE scaffolds cultured in flow perfusion bioreactors.

Understanding the interplay between scaffold manufacturing parameters, culturing conditions and cell biology within the construct is necessary for transitioning regenerative medicine to a clinical setting.

Although previous attempts have been made at modeling artificial tissue cultures, they were limited by oversimplifying assumptions, such as a uniform cell / tissue monolayer coverage of the scaffold's surface and idealized scaffold geometries. On the other hand, this novel and scalable technology can enable researchers to account for the realistic architectural non-idealities inherent to tissue engineering scaf-folds; as well as for the presence of cells / tissues in their pores.

An additional advantage of our method is that it allows for correlating cell behavior and tissue growth with the flow physics occurring inside of complex 3D scaffold microenvironments. Moreover, such relationships can be tracked over time via modeling based on nondestructive repeated scanning. The report appears in the December 2016 issue of the journal TECHNOLOGY.

"By taking advantage of the exact spatio-temporal information provided by the high-resolution micro-CT imaging, this approach opens the door for transforming computer-assisted tissue engineering which is traditionally done based on virtual drawings of scaffolds and very little-to-no cross validation against experiment", says Professor Roman Voronov, Ph.D. of the New Jersey Institute of Technology and Principal Investigator of the paper. The manuscript offers a 'recipe' for the technology which culminated out of an over a decade-long ef-fort by the team working on the BTE-modeling problem.

While the imaging aspect of their approach offers an unprecedented ability to detect and tell apart individual cells, soft tissues and calcification embedded within scaffold, the LBM is chosen for its ability to handle large-scale simulations (such as those resulting from the sub-micron voxel resolution shown here) and complex boundary conditions typical of the BTE scaffolds.

And, although the presented results are meant to serve as proof-of-concept only, the demonstrated technology is not limited by sample size, since its algorithms are fully parallelizable for supercomputing.

Therefore, it is straight-forward to extend to full-scaffold models, with the only physical limitation being the micro-CT sample-chamber. However, those are typically much larger than the scaffolds.

"Moreover, in case repeated scanning is not possible, or not desirable, the number of scans required can be minimized by simply subtracting any bio-matter from an end-point image of a fully-cultured scaffolds. This would help to estimate the scaffold's initial geometry prior to the cell seeding.", said Taseen Alam of NJIT, the first author of the paper.

Once this is done, the fluid flow patterns established within the initial empty scaffold can be correlated to the tissue growth observed in the end-point image.

Finally, since the calculated results are overlaid onto the experimental images in 3D, the method itself serves as a direct comparison to the experiment. And any correlation obtained as a result of the image-based modeling can be subsequently tested by attempting predictions in samples previously-unencountered by the code.

The team is now working to further extend the technology by including molecular transport, which is rarely simulated by the conventional models. For example, distribution of O2 and nutrient/waste within the scaffold, transport of scaffold degradation byproducts whose acidic nature may be detrimental to the cells, and molecular signals between the cells could all be accounted for using the same image-based approach. In this way, a more complete picture of cell behavior in complex micro-environments can be generated.

Finally, application of this technology to driving BTE cultures by the computer, in real time and in a closed-loop manner, presents an exciting new direction for commercial deployment of the artificially grown tissues and organs in a hospital setting.

Additional co-authors of the TECHNOLOGY paper are Quang Long Pham from NJIT, Vassilios I. Si-kavitsas, Ph.D., Dimitrios V. Papavassiliou, Ph.D., and Robert L. Shambaugh, Ph.D., from the University of Oklahoma at Norman.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
World Scientific
Satellite-based Internet technologies






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
INTERNET SPACE
Nokia sues Apple for patent infringement
Helsinki (AFP) Dec 21, 2016
Nokia announced Wednesday it is suing Apple in German and US courts for patent infringement, claiming the US tech giant was using Nokia technology in "many" products without paying for it. Finnish Nokia, once the world's top mobile phone maker, said the two companies had signed a licensing agreement in 2011, and since then "Apple has declined subsequent offers made by Nokia to license other ... read more


INTERNET SPACE
India achieves advances multiple space systems in 2016

Spacewalk for Thomas Pesquet at ISS

NASA's Exo-Brake 'Parachute' to Enable Safe Return for Small Spacecraft

Trump sits down with tech execs, including critics

INTERNET SPACE
Preparing to Plug Into NASA SLS Fuel Tank

New round of wind tunnel tests underway for bigger SLS version

United Launch Alliance launches EchoStar XIX satellite

Ultra-Cold Storage - Liquid Hydrogen may be Fuel of the Future

INTERNET SPACE
Small Troughs Growing on Mars May Become 'Spiders'

All eyes on Trump over Mars

Opportunity performs several drives to ancient gully

Full go-ahead for building ExoMars 2020

INTERNET SPACE
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

INTERNET SPACE
Airbus DS and Energia eye new medium-class satellite platform

OneWeb announces key funding form SoftBank Group and other investors

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

INTERNET SPACE
Meet a 'Spacecraft Dressmaker'

NASA Satellite Servicing Office Becomes a Projects Division

Ultra-small nanocavity advances technology for secure quantum-based data encryption

Ultra-high-speed optical fiber sensor enables detection of structural damage in real time

INTERNET SPACE
Searching a sea of 'noise' to find exoplanets - using only data as a guide

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Exciting new creatures discovered on ocean floor

Astronomers discover dark past of planet-eating 'Death Star'

INTERNET SPACE
Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation

New Perspective on How Pluto's "Icy Heart" Came to Be









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.