. 24/7 Space News .
IRON AND ICE
Icy surprises at Rosetta's comet
by Staff Writers
Paris (ESA) Nov 18, 2016


The colour of visible light reflected by Comet 67P/Churyumov-Gerasimenko on 1 August 2014 (left), shortly before Rosetta arrived at the comet, and a year later, on 30 August 2015 (right), shortly after the comet's closest approach to the Sun. The maps are derived from the comparison of images taken at wavelengths between 535 nm and 882 nm with Rosetta's OSIRIS narrow-angle camera. On a global scale, the entire comet surface of the comet turned increasingly bluer in colour as it approached the Sun, and gradually turned redder again as it moved away. Bluer colours are indicative of portions of the surface that are richer in water ice. As the comet moved closer to the Sun and its activity increased, the outgassing of water vapour and other gases lifted off large amounts of dust, exposing more of the ice-rich terrain underneath. Image courtesy ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; Reprinted with permission from S. Fornasier et al., Science 10.1126/science.aag2671 (2016). For a larger version of this image please go here.

As Rosetta's comet approached its most active period last year, the spacecraft spotted carbon dioxide ice - never before seen on a comet - followed by the emergence of two unusually large patches of water ice.

The carbon dioxide ice layer covered an area comparable to the size of a football pitch, while the two water ice patches were each larger than an Olympic swimming pool and much larger than any signs of water ice previously spotted at the comet. The three icy layers were all found in the same region, on the comet's southern hemisphere.

A combination of the complex shape of the comet, its elongated path around the Sun and the substantial tilt of its spin, seasons are spread unequally between the two hemispheres of the double-lobed Comet 67P/Churyumov-Gerasimenko.

When Rosetta arrived in August 2014, the northern hemisphere was still undergoing its 5.5 year summer, while the southern hemisphere was in winter and much of it was shrouded in darkness.

However, shortly before the comet's closest approach to the Sun in August 2015, the seasons changed and the southern hemisphere experienced a brief but intense summer, exposing this region to sunlight again.

In the first half of 2015, as the comet steadily became more active, Rosetta observed water vapour and other gases pouring out of the nucleus, lifting its dusty cover and revealing some of the comet's icy secrets.

In particular, on two occasions in late March 2015, Rosetta's visible, infrared and thermal imaging spectrometer, VIRTIS, found a very large patch of carbon dioxide ice in the Anhur region, in the comet's southern hemisphere.

This is the first detection of solid carbon dioxide on any comet, although it is not uncommon in the Solar System - it is abundant in the polar caps of Mars, for example.

"We know comets contain carbon dioxide, which is one of the most abundant species in cometary atmospheres after water, but it's extremely difficult to observe it in solid form on the surface," explains Gianrico Filacchione from Italy's INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, who led the study.

In the comet environment, carbon dioxide freezes at -193 C, much below the temperature where water turns into ice. Above this temperature, it changes directly from a solid to a gas, hampering its detection in ice form on the surface.

By contrast, water ice has been found at various comets, and Rosetta detected plenty of small patches on several regions.

"We hoped to find signs of carbon dioxide ice and had been looking for it for quite a while, but it was definitely a surprise when we finally detected its unmistakable signature," adds Gianrico.

The patch, consisting of a few percent of carbon dioxide ice combined with a darker blend of dust and organic material, was observed on two consecutive days in March. This was a lucky catch: when the team looked at that region again around three weeks later, it was gone.

Assuming that all of the ice had turned into gas, the scientists estimated that the 80 m + 60 m patch contained about 57 kg of carbon dioxide, corresponding to a 9 cm-thick layer. Its presence on the surface is likely an isolated rare case, with the majority of carbon dioxide ice being confined to deeper layers of the nucleus.

Gianrico and his collaborators believe the icy patch dates back a few years, when the comet was still in the cold reaches of the outer Solar System and the southern hemisphere was experiencing its long winter. At that time, some of the carbon dioxide still outgassing from the interior of the nucleus condensed on the surface, where it remained frozen for a very long while, and vaporised only as the local temperature finally rose again in April 2015.

This reveals a seasonal cycle of carbon dioxide ice, which unfolds over the comet's 6.5 year orbit, as opposed to the daily cycle of water ice, also spotted by VIRTIS shortly after Rosetta's arrival.

Interestingly, shortly after the carbon dioxide ice had disappeared, Rosetta's OSIRIS narrow-angle camera detected two unusually large patches of water ice in the same area, between the southern regions of Anhur and Bes. "We had already seen many metre-sized patches of exposed water ice in various regions of the comet, but the new detections are much larger, spanning some 30 m + 40 m each, and they persisted for about 10 days before they completely disappeared," says Sonia Fornasier from LESIA-Observatoire de Paris and Universite Paris Diderot, France, lead scientist of the study focusing on seasonal and daily surface colour variations.

These ice-rich areas appear as very bright portions of the comet surface reflecting light that is bluer in colour compared with the redder surroundings. Scientists have experimented with mixtures of dust and water ice to show that, as the concentration of ice in them increases, the reflected light becomes gradually bluer in colour, until reaching a point where equal amounts of light are reflected in all colours.

The two newly detected patches contain 20-30% of water ice mixed with darker material, forming a layer up to 30 cm thick of solid ice. One of them was likely lurking underneath the carbon dioxide ice sheet revealed by VIRTIS about a month before.

"On a global scale, we also found that the entire comet surface turned increasingly bluer in colour as it approached the Sun and the intense activity lifted off large amounts of dust, exposing more of the ice-rich terrain underneath," explains Sonia.

As the comet moved away from the Sun, the scientists observed the overall colour of the comet surface gradually turning redder again.

They also revealed local variations of colour, indicative of the daily cycle of water ice. Quickly turning into water vapour when exposed to sunlight during the local daytime, it condensed back into thin layers of frost and ice as the temperature decreases after sunset, only to vaporise again on the following day.

The distribution of water ice beneath the dusty surface of the comet seems widely but not uniformly spread, with small patches punctuating the nucleus, appearing and disappearing as a result of the comet's activity.

Occasionally, larger and thicker portions of ice are also uncovered, dating back to a previous approach to the Sun.

"These two studies of the comet's icy content are revealing new details about the composition and history of the nucleus," says Matt Taylor, ESA Rosetta project scientist.

"While the flight part of the mission is now over, the scientific exploitation of the enormous quantity of data collected by Rosetta continues."

Research papers: "Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko" by G. Filacchione et al. and "Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature" by S. Fornasier et al. are published in the journal Science.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rosetta at ESA
Asteroid and Comet Mission News, Science and Technology






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
IRON AND ICE
Comet 67P is younger than scientists thought
Bern, Switzerland (SPX) Nov 9, 2016
... read more


IRON AND ICE
New crews announced for Space Station

ESA astronaut Thomas Pesquet arrives at the International Space Station

Proxima mission begins

Supermoon brightens night sky: A lesson in orbital mechanics

IRON AND ICE
Predictive modeling for NASA's Entry, Descent, and Landing Missions

SLS propulsion system goes into Marshall stand ahead of big test series

Vega ready for GOKTURK-1A to be encapsulated

Star One D1 arrives for heavy-lift Ariane 5 in Dec with 2 SSL-built satellites

IRON AND ICE
NASA field test focuses on science of lava terrains, like Early Mars

ESA's new Mars orbiter prepares for first science

Can we grow potatoes on Mars

Dutch firm unveils concept space suit for Mars explorers

IRON AND ICE
Chinese astronauts return to earth after longest mission

Material and plant samples retrieved from space experiments

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

IRON AND ICE
Intelsat and Intelsat General support hurricane Matthew recovery efforts

Charyk helped chart the course of satellite communications

Boeing to consolidate defense and space sites

Can India beat China at its game with common satellite for South Asia

IRON AND ICE
UK 'space junk' project highlights threat to missions

Dry adhesive holds in extreme cold, strengthens in extreme heat

NASA microthrusters achieve success on ESA's LISA Pathfinder

Malawi could help secure raw materials for green technologies

IRON AND ICE
Scientists from the IAC discover a nearby 'superearth'

Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

IRON AND ICE
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.