Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















IRON AND ICE
Ice in Ceres' shadowed craters linked to tilt history
by Staff Writers
Pasadena CA (JPL) Mar 23, 2017


This animation shows how the illumination of Ceres' northern hemisphere varies with the dwarf planet's axial tilt, or obliquity. Shadowed regions are highlighted for tilts of 2 degrees, 12 degrees and 20 degrees. Image courtesy NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

Dwarf planet Ceres may be hundreds of millions of miles from Jupiter, and even farther from Saturn, but the tremendous influence of gravity from these gas giants has an appreciable effect on Ceres' orientation. In a new study, researchers from NASA's Dawn mission calculate that the axial tilt of Ceres - the angle at which it spins as it journeys around the sun - varies widely over the course of about 24,500 years. Astronomers consider this to be a surprisingly short period of time for such dramatic deviations.

Changes in axial tilt, or "obliquity," over the history of Ceres are related to the larger question of where frozen water can be found on Ceres' surface, scientists report in the journal Geophysical Research Letters. Given conditions on Ceres, ice would only be able to survive at extremely cold temperatures - for example, in areas that never see the sun.

"We found a correlation between craters that stay in shadow at maximum obliquity, and bright deposits that are likely water ice," said Anton Ermakov, postdoctoral researcher at NASA's Jet Propulsion Laboratory, Pasadena, California, and lead author of the study. "Regions that never see sunlight over millions of years are more likely to have these deposits."

Cycles of Obliquity
Throughout the last 3 million years, Ceres has gone through cycles where its tilt ranges from about 2 degrees to about 20 degrees, calculations indicate.

"We cannot directly observe the changes in Ceres' orientation over time, so we used the Dawn spacecraft's measurements of shape and gravity to precisely reconstruct what turned out to be a dynamic history," said Erwan Mazarico, a co-author at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

The last time the dwarf planet reached a maximum tilt, which was about 19 degrees, was 14,000 years ago, researchers said. For comparison, Earth is tilted 23.5 degrees. This significant tilt causes our planet to experience seasons: The northern hemisphere experiences summer when it is oriented toward the sun, and winter when it's pointed away from the sun. By contrast, Ceres' current tilt is about 4 degrees, so it will not have such strong seasonal effects over the course of a year there (which is about 4.6 Earth years).

How Obliquity Relates to Ice
When the axial tilt is small, relatively large regions on Ceres never receive direct sunlight, particularly at the poles. These persistently shadowed regions occupy an area of about 800 square miles (2,000 square kilometers). But when the obliquity increases, more of the craters in the polar regions receive direct exposure to the sun, and persistently shadowed areas only occupy 0.4 to 4 square miles (1 to 10 square kilometers). These areas on Ceres' surface, which stay in shadow even at high obliquity, may be cold enough to maintain surface ice, Dawn scientists said.

These craters with areas that stay in shadow over long periods of time are called "cold traps," because they are so cold and dark that volatiles - substances easily vaporized - that migrate into these areas can't escape, even over a billion years. A 2016 study by the Dawn team in Nature Astronomy found bright material in 10 of these craters, and data from Dawn's visible and infrared mapping spectrometer indicate that one of them contains ice.

The new study focused on polar craters and modeled how shadowing progresses as Ceres' axial tilt varies. In the northern hemisphere, only two persistently shadowed regions remain in shadow at the maximum 20-degree tilt. Both of these regions have bright deposits today. In the southern hemisphere, there are also two persistently shadowed regions at highest obliquity, and one of them clearly has a bright deposit.

Shadowed Regions in Context
Ceres is the third body in the solar system found to have permanently shadowed regions. Mercury and Earth's moon are the other two, and scientists believe they received their ice from impacting bodies. However, Mercury and the moon do not have such wide variability in their tilts because of the stabilizing gravitational influence of the sun and Earth, respectively.

The origin of the ice in Ceres' cold traps is more mysterious - it may come from Ceres itself, or may be delivered by impacts from asteroids and comets. Regardless, the presence of ice in cold traps could be related to a tenuous water atmosphere, which was detected by ESA's Herschel Space Observatory in 2012-13. Water molecules that leave the surface would fall back onto Ceres, with some landing in cold traps and accumulating there.

"The idea that ice could survive on Ceres for long periods of time is important as we continue to reconstruct the dwarf planet's geological history, including whether it has been giving off water vapor," said Carol Raymond, deputy principal investigator of the Dawn mission and study co-author, based at JPL.

IRON AND ICE
Cryovolcanism on Dwarf Planet Ceres
Gottingen, Germany (SPX) Mar 15, 2017
Among the most striking features on the surface of Ceres are the bright spots in the center of Occator crater which stood out already as NASA's space probe Dawn approached the dwarf planet. Scientists under the leadership of the Max Planck Institute for Solar System Research (MPS) have now for the first time determined the age of this bright material, which consists mainly of deposits of special ... read more

Related Links
Dawn at NASA
Asteroid and Comet Mission News, Science and Technology

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
NASA's hybrid computer enables Raven's autonomous rendezvous capability

Trump, NASA and a rare consensus: mission to Mars

COBALT Flight Demonstrations Fuse Technologies to Gain Precision Landing Results

Spacewalking French, US astronauts to upgrade orbiting lab

IRON AND ICE
N.Korea rocket test shows 'meaningful progress': South

MAXUS - Europe's largest sounding rocket to be launched from Esrange

Spaceport America sets new record for student launched sounding rocket

Satellite launch shelved over strikes

IRON AND ICE
Mars Volcano, Earth's Dinosaurs Went Extinct About the Same Time

Breaks observed in Curiosity rover wheel treads

Does Mars Have Rings? Not Right Now, But Maybe One Day

ExoMars: science checkout completed and aerobraking begins

IRON AND ICE
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

IRON AND ICE
OneWeb Satellites breaks ground on high-volume satellite manufacturing facility

Start-Ups at the Final Frontier

Russia probes murder of senior space official in jail

Globalsat Sky and Space Global sign MoU for testing and offering satellite service in Latin America

IRON AND ICE
Rare-earths become water-repellent only as they age

New study maps space dust in 3-D

Visualizing nuclear radiation

ADATS could assist X-planes with large, super-fast data transmission

IRON AND ICE
Fledgling stars try to prevent their neighbors from birthing planets

Fossil or inorganic structure? Scientists dig into early life forms

Gigantic Jupiter-type planet reveals insights into how planets evolve

Operation of ancient biological clock uncovered

IRON AND ICE
Scientists make the case to restore Pluto's planet status

ESA's Jupiter mission moves off the drawing board

NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement