. 24/7 Space News .
STELLAR CHEMISTRY
IceCube Search for 'Sterile Neutrino' Draws a Blank
by Staff Writers
Madison WI (SPX) Aug 08, 2016


The only way to detect a sterile neutrino is to catch it in the act of transforming into one of the other types. The presence of the sterile neutrino has been hinted at by several experiments, including at the Los Alamos National Laboratory in the 1990s and, more recently, at the Daya Bay nuclear reactor facility near Hong Kong. But definitive evidence of the particle's existence has so far eluded scientists.

In an effort to fill in the blanks of the Standard Model of particle physics, science has been conducting a diligent search for a hypothesized particle known as the "sterile neutrino." Now, with the latest results from an icy particle detector at the South Pole, scientists are almost certain that there is no such particle.

If discovered, the sterile neutrino would have added to the neutrino family portrait and helped explain a number of puzzles that suggest the existence of more than the three known flavors of neutrinos. Ultimately, such a particle could also help resolve the mystery of the origin of dark matter and the matter/antimatter asymmetry in the universe.

Neutrinos are ghostly particles with almost no mass and only rarely interact with matter. Trillions of neutrinos will course through your body in the time it takes to read this sentence. There are three known types of neutrinos: muon, electron and tau. Hints of a possible fourth type of neutrino have come from several experiments. Known as the "sterile neutrino," the hypothesized particle would not interact at all with matter except, possibly, through gravity.

Discovering the sterile neutrino would also throw a wrench into the Standard Model, which allows for only the three known types of neutrino. "If you throw in a fourth neutrino, it changes everything," explains Francis Halzen, a University of Wisconsin-Madison professor of physics and principal investigator for the IceCube Neutrino Observatory, a massive detector embedded deep in the ice beneath the South Pole. "Sterile means it doesn't interact with matter itself, although it can dramatically interfere with the way conventional neutrinos do."

The only way to detect a sterile neutrino is to catch it in the act of transforming into one of the other types. The presence of the sterile neutrino has been hinted at by several experiments, including at the Los Alamos National Laboratory in the 1990s and, more recently, at the Daya Bay nuclear reactor facility near Hong Kong. But definitive evidence of the particle's existence has so far eluded scientists.

Now, in a study published (Aug. 8, 2016) in the journal Physical Review Letters, IceCube researchers may have largely put to rest the notion of this fourth kind of neutrino. In two independent analyses of data from the massive Antarctic detector - each consisting of a year's worth of data or about 100,000 neutrino events - the striking feature associated with the sterile neutrino was nowhere to be found, says Halzen.

The analyses were performed using so-called atmospheric neutrinos, neutrinos created when cosmic rays crash into particles in the upper atmosphere of the Earth. The groups conclude that there is 99 percent certainty the eV-mass sterile neutrino hinted at by previous experiments does not exist.

"Like Elvis, people see hints of the sterile neutrino everywhere," says Halzen. "There was this collection of hints, and theorists were convinced it exists."

The groups conducting the analyses scoured the hundreds of thousands of neutrino events that reached the IceCube detector after coursing through the Earth from the sky in the northern hemisphere. Because only neutrinos can travel through the planet unimpeded, the Earth serves as an effective screen, filtering out all other types of particles.

IceCube consists of 5,160 light-detecting sensors frozen in crystal clear Antarctic ice more than a mile beneath the South Pole. Neutrinos are detected when they occasionally crash into nuclei, creating a muon and, subsequently, a telltale streak of blue Cherenkov light.

The search conducted by the IceCube teams looked at neutrino events occurring in the 320 GeV to 20 TeV energy range. In this range, Halzen notes, sterile neutrinos would produce a very distinctive signature.

The appeal of a fourth kind of neutrino is that it would help bridge a gap in theory that predicts that some neutrinos from a beam of one type of neutrino emanating from a given source - be it a nuclear reactor, the Sun or the atmosphere - would change from one kind of neutrino to another as they travel to a distant detector. It would also help solve other cosmological puzzles like the mismatch between matter and antimatter in the universe and the origin of dark matter.

"This new result highlights the versatility of the IceCube Neutrino Observatory," according to Olga Botner, a professor of physics and astronomy at Uppsala University in Sweden and the spokesperson for the IceCube Collaboration. "It is not only an instrument for exploration of the violent universe but allows detailed studies of the properties of the neutrinos themselves."

Failing to detect the elusive particle, however, means physics remains in the dark about the origin of the tiny neutrino mass, or why they have mass in the first place, says Halzen.

"Searches for Sterile Neutrinos with the IceCube Detector," M. G. Aartsen et al., 2016 Aug. 8, Physical Review Letters


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University Of Wisconsin
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
New detector at South Pole shows early success at neutrino hunting
Lawrence KS (SPX) Jul 26, 2016
In the second it takes to read these words, 65 billion neutrinos will shoot through every square centimeter of your body. Luckily, these infinitesimal particles don't do any harm - they pass through us, as they do with most everything, without stopping or interacting. "Partly because it's so tiny, a neutrino has this unique property - it's able to penetrate through matter very easily," sai ... read more


STELLAR CHEMISTRY
As dry as the moon

China's Jade Rabbit lunar rover dies in blaze of online glory

US company gets historic nod to send lander to moon

Heart hazard for Apollo astronauts: study

STELLAR CHEMISTRY
Astrobiologists study Mars on Earth

Mars Gullies Likely Not Formed by Liquid Water

Opportunity Surpasses 43 Kilometers on the Odometer

Digging deeper into Mars

STELLAR CHEMISTRY
After Deadly Crash, Virgin Galactic to Fly Its Spaceplane Once More

Tile Bonding Begins for Orion's First Mission Atop Space Launch System Rocket

Russia, US Discuss Lunar Station for Mars Mission

Disney theme park in Shanghai nears a million visitors

STELLAR CHEMISTRY
China begins developing hybrid spacecraft

China to expand int'l astronauts exchange

China's Agreement with United Nations to Help Developing Countries Get Access to Space

Chinese tracking ship Yuanwang-7 starts maiden voyage

STELLAR CHEMISTRY
JSC pursues collection of new technologies for ISS

Dream Chaser Spacecraft on Track to Supply Cargo to ISS

Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

STELLAR CHEMISTRY
Russia to Launch Angara-1.2 Rocket With Korean Satellite KOMPSAT-6 in 2020

NASA Orders Second SpaceX Crew Mission to International Space Station

Russia Postpones Launch of Proton Rocket With US Satellite Until October 10

The rise of commercial spaceports

STELLAR CHEMISTRY
Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

NASA's Next Planet Hunter Will Look Closer to Home

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

STELLAR CHEMISTRY
Aladin wind probe ready for Aeolus

Humanity in Dire Need of Global System to Prevent In-Space Collisions

Lattice structure absorbs vibrations

Study looks at future of 2D materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.