. 24/7 Space News .
SPACE SCOPES
How we're shrinking the telescope
by Staff Writers
Palo Alto CA (SPX) Jan 21, 2016


SPIDER's photonic integrated circuits do not require complex, precision alignment of large lenses and mirrors. That means less risk on orbit. And its many eyes can be rearranged into various configurations, which could offer flexible placement options on its host. Telescopes have always been cylindrical, but SPIDER could begin a new era of different thin-disk shapes staring in the sky, from squares to hexagons and even conformal concepts.

Since Galileo first started gazing at the stars atop a mountain in Italy, to modern-day astronomers who can see billions of miles into space, the general design of a telescope has pretty much remained the same.

In fact, even if you're looking at the stars using only the light-sensitive cells in your eyes, the image-forming process works the same way. Both methods collect light from an object and then reflect that light to form an image. Just like observatories and science classrooms use telescopes to gaze up, satellites use telescopes, too. That's how we get map images and weather forecasts, and you may recognize the most famous of these eyes in space, the incredible Hubble Space Telescope.

From space, the need for higher-resolution imaging to resolve far away objects requires bigger and bigger telescopes to the point where the size, weight and power of the telescope can completely dominate a system. Plus, it's also really expensive to put big, heavy objects in space.

"We can only scale the size and weight of telescopes so much before it becomes impractical to launch them into orbit and beyond," said Danielle Wuchenich, senior research scientist at Lockheed Martin's Advanced Technology Center in Palo Alto, California. "Besides, the way our eye works is not the only way to process images from the world around us."

Spider Eyes: Power In Numbers
In order to shed pounds on future telescopes, scientists at Lockheed Martin are taking a new look at how to process imagery by using a technique called interferometry. Interferometry takes in what you're seeing, photons, using a thin array of tiny lenses that replaces the large, bulky mirrors or lenses in traditional telescopes. Large-scale interferometer arrays, located in observatories around the world, are used to collect data over large periods of time to form ultra-high-resolution images of objects in space.

SPIDER flips that concept, staring instead from space, and trading person-sized telescopes and complex combining optics for hundreds or thousands of tiny lenses that feed silicon-chip photonic integrated circuits (PICs) to combine the light in pairs to form interference fringes.

The amplitude and phase of the fringes are measured and used to construct a digital image. This provides an increase in resolution while maintaining a thin disk. It's a revolutionary concept analogous to the idea that helped replace your bulky old television with a thin display that can hang on your living room wall. It's also how Lockheed Martin's imaging technology, called Segmented Planar Imaging Detector for Electro-optical Reconnaissance (or SPIDER), could reduce the size, weight and power needs for telescopes by 10 to 100 times. This concept could make a big difference for commercial and government satellites alike.

"What's new is the ability to build interferometer arrays that have the same number of channels as a digital camera," said Alan Duncan, senior fellow at Lockheed Martin. "They can take a snapshot, process it and there's your image. It's basically treating interferometer arrays like a point-and-shoot camera."

SPIDER's photonic integrated circuits do not require complex, precision alignment of large lenses and mirrors. That means less risk on orbit. And its many eyes can be rearranged into various configurations, which could offer flexible placement options on its host. Telescopes have always been cylindrical, but SPIDER could begin a new era of different thin-disk shapes staring in the sky, from squares to hexagons and even conformal concepts.

Duncan's team, which includes Wuchenich, is developing this capability in the heart of Silicon Valley at the Advanced Technology Center. This is also the home of the Optical Payload Center of Excellence, which brings together the collective expertise of Lockheed Martin's space observation professionals. Alan and other scientists form the research base of the center so that one day, developmental technologies like SPIDER could be an option on production spacecraft.

The Future Looks Bright (And Light)
Developed with funding from the Defense Advanced Research Projects Agency (DARPA), the SPIDER design today is still in its early stages. It uses just several lenses and their associated PICs developed by Lockheed Martin's research partners at University of California, Davis. Despite the technology's advances, Duncan predicts SPIDER's capabilities could still be five to ten years away from being fully matured.

However, the team envisions a future where a telescope could be scaled up to serve in a similar capacity as telescopes that are currently photographing the planet, and at a fraction of the cost. In fact, SPIDER could even be able to operate on a spacecraft as a hosted payload, where it could simply be mounted to the side of a vehicle with minimal size, weight and power impact.

"SPIDER has the potential to enable exciting discoveries by putting high-resolution imaging systems within outer planet system orbits such as Saturn and Jupiter," said Duncan. "The ability to reduce size, weight and power could significantly change the game. With 10 to 100 times the resolution of a comparable-weight traditional telescope, imagine what you could discover."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
SPIDER at Lockheed Martin
Space Telescope News and Technology at Skynightly.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SPACE SCOPES
American Astronomical Society Assumes Leadership of WorldWide Telescope
Los Angeles CA (SPX) Jan 20, 2016
Microsoft's WorldWide Telescope (WWT) astronomy software has a new institutional home: the American Astronomical Society (AAS). This follows a vote by the Society's governing board at the 227th AAS meeting in Kissimmee, Florida, earlier this month. WWT is a scriptable and interactive "universe information system" for exploring the multiwavelength sky. It allows users to retrieve and share ... read more


SPACE SCOPES
Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

Chang'e-3 landing site named "Guang Han Gong"

SPACE SCOPES
Rover uses Rock Abrasion Tool to grind rocks

Thales Alenia Space to supply reaction control subsystem for ExoMars

Money troubles may delay Europe-Russia Mars mission

Opportunity Welcomes Winter Solstice

SPACE SCOPES
Zinnias from space

Engineers Mark Completion of Orion's Pressure Vessel

NASA's Scott Kelly unveils first flower grown in space: an orange zinnia

How mold on Space Station flowers is helping get us to Mars

SPACE SCOPES
China aims for the Moon with new rockets

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China shoots for first landing on far side of the moon

China Plans More Than 20 Space Launches in 2016

SPACE SCOPES
Water in US astronaut's helmet cuts short Briton's 1st spacewalk

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

Roscosmos prepares to launch first manned Soyuz MS

SPACE SCOPES
Building a robust commercial market in low earth orbit

EpicNG satellite installed on Ariane 5 for launch

NASA awards ISS cargo transport contracts

SpaceX will try to land its reusable rocket on an ocean dock

SPACE SCOPES
Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

SPACE SCOPES
NASA's Van Allen Probes Revolutionize View of Radiation Belts

NASA Chooses Avere to Launch its Data onto the AWS Cloud

Single molecule detection of contaminants, explosives or diseases

Bridging the Bio-Electronic Divide









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.