Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Hot stuff: Magnetic domain walls
by Staff Writers
Braunschweig, Germany (SPX) Oct 16, 2015


Bent magnetic nanowire made of a nickel/iron alloy. The heating wire (right) generates a temperature difference between the electric contacts of the nanowire. If a magnetic wall is captured at the indentation, the thermoelectric voltage measured between the contacts changes. Image courtesy PTB.

Magnetic nanostructures - or rather: the interaction between charge, spin and current flow as a function of a temperature gradient in such structures - this is what the fast growing research area named "spin caloritronics" deals with. And this area of research has already come up with a number of newly discovered interesting effects and promising applications.

Scientists from the Physikalisch-Technische Bundesanstalt (PTB) have, for the first time, succeeded in measuring the thermoelectric properties of a single magnetic domain wall. The results have been published in the current issue of the renowned scientific journal Physical Review B and have even been emphasized as an "Editors' Suggestion".

Magnetic domain walls occur in all macroscopic and nanoscale magnetic materials and components. This is the reason why the fact that not only the magnetic and electric properties, but also - for the first time - the thermoelectric properties of these fundamental magnetic structures can be detected and described, is important for a whole series of applications.

As early as in 1821, physicist Thomas Johann Seebeck discovered that a temperature difference between the two ends of a metallic wire generates an electric voltage between the ends of this wire. Today, this so-called "Seebeck effect" is used, for example, in thermocouples to directly convert waste heat into electric energy.

The size of the electric voltage generated hereby depends not only on the electric, but also on the magnetic properties of the material. Thus, in a ferromagnetic material (such as iron), the Seebeck coefficient changes when the magnetization is turned around in an external magnetic field. This behavior is also called the "magneto-Seebeck effect".

At PTB, the thermoelectric properties of single magnetic nanowires have now been investigated in detail for the first time. If, in a magnetic nanowire, two differently poled areas come into contact with each other, a magnetic domain wall occurs in the transition area. Hereby, the presence or absence of the domain wall manifests itself by a change in the electric resistance of the wire which can be measured via electric contacts.

The recent investigations have shown for the first time that the presence or absence of the domain wall also leads to a measurable change in the thermoelectric voltage generated by the wire. For this purpose, the experiments carried out consisted in heating one side of the wire with an electric heater and in measuring the Seebeck voltage via two contacts (see figure).

An indentation in the wire allowed the scientists to capture exactly one single magnetic domain wall between the contacts and to determine the resulting difference in the Seebeck voltage. It turned out that the domain wall's magneto-Seebeck effect leads to an increase in the total thermoelectric voltage measured in the nanowire.

Magnetic domain walls occur in all macroscopic and nanoscale magnetic materials and components. The results, which have now been published, allowed not only the magnetic and electric properties, but also the thermoelectric properties of these fundamental magnetic structures to be detected and described.

Patryk Krzysteczko, Xiukun Hu, Niklas Liebing, Sibylle Sievers, Hans W. Schumacher: Domain wall magneto-Seebeck effect. Phys. Rev. B 92, 140405(R) (2015)

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Physikalisch-Technische Bundesanstalt (PTB)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Patterning oxide nanopillars at the atomic scale by phase transformation
Sendai, Japan (SPX) Oct 16, 2015
Researchers at Tohoku University's Advanced Institute for Materials Research (AIMR) have carried out a collaborative study aimed at precisely controlling phase transformations with high spatial precision, which represents a significant step forward in realizing new functionalities in confined dimensions. The team, led by Prof. Yuichi Ikuhara, applied the focused electron beam of a scanning ... read more


TECH SPACE
Mound near lunar south pole formed by unique volcanic process

Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

TECH SPACE
Opportunity parked for solar panels to charge up for winter

Pebbles on Mars likely traveled tens of miles down a riverbed

To save on weight, a detour to the moon is the best route to Mars

Opportunity working at 'Marathon Valley' before winter relocation

TECH SPACE
Russian Cosmonauts Taste 160 Meals Ahead of Space Station Expedition

NASA, Israel ink space cooperation agreement

Magnetic sail tech alternative to rocket-based space travel

NASA Appoints Mark Kirasich To Serve As Orion Program Manager

TECH SPACE
Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

TECH SPACE
Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

NASA extends Boeing contract for International Space Station

TECH SPACE
ILS Proton Launches Turksat 4B

Both passengers for next Ariane 5 mission arrive in French Guiana

Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

TECH SPACE
Airbus DS ready to start testing exoplanet tracker CHEOPS

Hubble Telescope Spots Mysterious Space Objects

Exoplanet Anniversary: From Zero to Thousands in 20 Years

Mysterious ripples found racing through planet-forming disc

TECH SPACE
Hot stuff: Magnetic domain walls

Colombia receives Northrop Grumman AN/TPS-78 radar

Patterning oxide nanopillars at the atomic scale by phase transformation

Methodology could lead to more sustainable manufacturing systems




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement