. 24/7 Space News .
CHIP TECH
High-speed switching for ultrafast electromechanical switches and sensors
by Staff Writers
3Tokyo, Japan (SPX) Aug 30, 2017


The (a-f) capacitance, strain, tilting angle, intensity, difference capacitance, and volume fraction of the c domain were measured as functions of time, respectively. The elastic deformation and ferroelastic domain switching were completed within 40 ns.

Unlike the slow ferroelastic domain switching expected for ceramics, high-speed sub-microsecond ferroelastic domain switching and simultaneous lattice deformation are directly observed for the Pb(Zr0.4Ti0.6)O3 thin films. This exciting finding paves the way for high-frequency ultrafast electromechanical switches and sensors.

Piezo micro electro mechanical systems (piezoMEMS) are miniaturized devices exhibiting piezoelectricity, i.e., the appearance of an electric charge under applied mechanical stress. These devices have many diverse applications in energy harvesters, micropumps, sensors, inkjet printer heads, switches, and so on. In permanently polarized (ferroelectric) materials, ferroelastic domain switching affects the piezoelectric properties significantly, and this behavior can be exploited for piezoMEMS applications.

Pb(Zr1-xTix)O3 (PZT) thin films have excellent piezoelectric and ferroelectric properties; therefore, they are potential candidates for MEMS applications. Under an applied electric field, both lattice elongation and 90 degrees ferroelastic domain switching are observed in tetragonal PZT thin films. In particular, non-180 degrees ferroelastic domain switching has important implications for the future realization of high-performance piezoMEMS devices.

However, before the recent investigation, the speed of this 90 degrees domain switching was unknown. In addition, the relationship between the speeds of the lattice deformation and ferroelastic domain switching had not been determined. To investigate these speeds, the research team led by Hiroshi Funakubo examined the switching behavior of Pb(Zr0.4Ti0.6)O3 thin films under applied rectangular electric field pulses.

To observe the changes in the lattice and the domain structure, time-resolved in situ synchrotron X-ray diffraction was carried out in synchronization with a high-speed pulse generator.

These observations were performed at the BL13XU beamline at the SPring-8 synchrotron radiation facility. The electric field pulses were applied to the PZT thin films through Pt top electrodes, which were fabricated on top of the films.

Investigation of the diffraction peaks in the PZT thin films revealed elongation of the surface normal c-axis lattice parameter of the c-domain with a simultaneous decrease in the surface normal a-axis lattice parameter of the a-domain under the applied electric field. The intensities of the diffraction peaks also changed under the electric field. These observations provided direct evidence of 90 degrees domain switching.

To determine the switching speed, the lattice elongation and domain switching behaviors were plotted as functions of time (Figure 1). These plots revealed that these processes were completed within 40 ns and occurred simultaneously in response to the applied electric field. The switching behavior was also shown to be perfectly repeatable.

The high-speed switching observed in these experiments was limited by the present electrical equipment, but is faster than that reported in previous studies. Further, this high-speed 90 degrees switching is reversible and can be used to enhance the piezoelectric response in piezoMEMS devices by several tens of nanoseconds. Therefore, this finding is of considerable importance for the ongoing development of ultrafast electromechanical switches and sensors.

Yoshitaka Ehara, Shintaro Yasui, Takahiro Oikawa, Takahisa Shiraishi, Takao Shimizu, Hiroki Tanaka, Noriyuki Kanenko, Ronald Maran, Tomoaki Yamada, Yasuhiko Imai, Osami Sakata, Nagarajan Valanoor, and Hiroshi Funakubo*, In-situ observation of ultrafast 90 degrees domain switching under application of an electric field in (100)/ (001)-oriented tetragonal epitaxial Pb(Zr0.4Ti0.6)O3 thin films, Scientific Reports, 10.1038/s41598-017-09389-6

CHIP TECH
Conformal metasurface coating eliminates crosstalk and shrinks waveguides
University Park PA (SPX) Aug 28, 2017
The properties of materials can behave in funny ways. Tweak one aspect to make a device smaller or less leaky, for example, and something else might change in an undesirable way, so that engineers play a game of balancing one characteristic against another. Now a team of Penn State electrical engineers have a way to simultaneously control diverse optical properties of dielectric waveguides by us ... read more

Related Links
Tokyo Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
'Gifted' high-tech takes spotlight at Berlin's IFA fair

NASA Offers Space Station as Catalyst for Discovery in Washington

Forty years on, Voyager still hurtles through space

ISS Orbit Increases Almost 2,000 Feet After Adjustment Maneuver - Control Center

CHIP TECH
ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Falcon 9 launches from Vandenberg

SpaceX launches Taiwan's first home-built satellite

Indian Space Agency, Israeli counterpart to formalize strategic collaborations

CHIP TECH
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

CHIP TECH
ESA and Chinese astronauts train together

To boldly go where no startup has gone before

China's satellite sends unbreakable cipher from space

Xian Satellite Control Center resolves over 10 major satellite faults in 50 years

CHIP TECH
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

CHIP TECH
Clamping down on causality by probing laser cavities

Rare-metals in the Himalayas: The potential world-class treasure

Why does rubbing a balloon on your hair make it stick?

Making 3-D printing safer

CHIP TECH
A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

Scientists take first snapshots of a molecular propeller that runs at 100 degrees Celsius

CHIP TECH
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.