. 24/7 Space News .
STELLAR CHEMISTRY
High-speed supernova reveals earliest moments of a dying star
by Staff Writers
Leicester UK (SPX) Jan 18, 2019

Artist's impression by Anna Serena Esposito

An international team of scientists, including astronomers from the Universities of Leicester, Bath and Warwick, have found evidence for the existence of a 'hot cocoon' of material enveloping a relativistic jet escaping a dying star.

A relativistic jet is a very powerful phenomena which involves plasma jets shooting out of black holes at close to the speed of light, and can extend across millions of light years.

Observations of supernova SN2017iuk taken shortly after its onset showed it expanding rapidly, at one third of the speed of light. This is the fastest supernova expansion measured to date. Monitoring of the outflow over many weeks revealed a clear difference between the initial chemical composition and that at later times.

Taken together, these are indicators of the presence of the much theorised hot cocoon, filling a gap in our knowledge of how a jet of material escaping a star interacts with the stellar envelope around it and providing a potential link between two previously distinct classes of supernovae.

The supernova signals the final demise of a massive star, in which the stellar core collapses and the outer layers are violently blown off. SN2017iuk belongs to a class of extreme supernovae, sometimes called hypernovae or GRB-SNe, that accompany a yet more dramatic event known as a gamma-ray burst (GRB).

At stellar death, a highly relativistic, narrow beam of material can be ejected from the poles of the star which glows brightly first in gamma radiation and then across the entire electromagnetic spectrum and is known as a GRB.

Until now, astronomers have been unable to study the earliest moments in the development of a supernova of this kind (a GRB-SN), but SN2017iuk was fortuitously close-by - at roughly 500 million light years from Earth - and the GRB light was underluminous, allowing the SN itself to be detectable at early times.

Dr Rhaana Starling, Associate Professor in the University of Leicester's Department of Physics and Astronomy said: "This immediately looked like an event worth chasing, as it happened in a grand-design spiral galaxy at very close proximity, cosmologically speaking.

"When the first sets of data came in there was an unusual component to the light that looked very blue, prompting a monitoring campaign to see if we could determine its origin by following the evolution and taking detailed spectra.

"The gamma-ray burst itself looked quite weak, so we could see other processes that were going on around the newly-formed jet which are normally drowned out. The idea of a cocoon of thermalised gas created by the relativistic jet as it drills out of the star had been proposed and implied in other cases, but here was the evidence that we needed to pin down the existence of such a structure."

A coordinated approach using a suite of space- and ground-based observatories was required to monitor the supernova over 30 days and at many wavelengths. The event was first detected using the Neil Gehrels Swift Observatory. Swift is a NASA space mission in which the University of Leicester is one of three partners, and hosts its UK data centre.

Data obtained with the Gravitational-wave Optical Transient Observatory (GOTO) helped to track the supernova light, while spectroscopy was obtained through dedicated observing programmes including initiatives by the STARGATE Collaboration headed up by Professor Nial Tanvir at the University of Leicester, which uses 8-m telescopes at the European Southern Observatory.

Professor Tanvir, Lecturer in Physics and Astronomy at the University of Leicester said: "The relativistic jet punches out through the star as if it was a bullet being fired out from the inside of an apple. What we've seen for the first time is all the apply debris that explodes out after the bullet."

Speeds of up to 115,000 kilometres per second were measured for the expanding supernova for approximately one hour after its onset. A different chemical composition was found for the early expanding supernova when compared with the more iron-rich later ejecta. The team concluded that just hours after the onset the ejecta is coming from the interior, from a hot cocoon created by the jet.

Existing supernova production models proved insufficient to account for the large amount of high velocity material measured. The team developed new models which incorporated the cocoon component and found these were an excellent match.

SN2017iuk also provides a long-sought link between the supernova that accompany GRBs, and those that do not: in lone supernovae, high speed outflows have also been seen, with velocities reaching 50,000 kilometres per second, which can originate in the same cocoon scenario but escape of the relativistic GRB jet is somehow thwarted.

Core-collapse supernovae without GRBs are usually found much later after their onset, giving scientists very little chance of detecting any signatures of a hot cocoon, whilst cocoon features in GRB-associated supernovae are usually hidden by the bright, relativistic jet.

The rare case of SN2017iuk has opened a window onto the earliest stages of this type of supernova phenomenon, allowing the elusive cocoon structure to be observed.

Research paper


Related Links
University of Leicester
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Team of telescopes finds X-ray engine inside mysterious supernova
Paris (ESA) Jan 14, 2019
ESA's high-energy space telescopes Integral and XMM-Newton have helped to find a source of powerful X-rays at the centre of an unprecedentedly bright and rapidly evolving stellar explosion that suddenly appeared in the sky earlier this year. The ATLAS telescope in Hawaii first spotted the phenomenon, since then named AT2018cow, on 16 June. Soon after that, astronomers all over the world were pointing many space- and ground-based telescopes towards the newly found celestial object, located in a gal ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Beans to be next vegetable on astronauts' menu by 2021

Moon sees first cotton-seed sprout

Space dreams: Alum Frank Bunger's quest to make space tourism a reality

NASA Astronaut Hague Who Failed to Reach ISS May Make One-Year Flight

STELLAR CHEMISTRY
SLS liquid hydrogen tank test article loaded into test stand

Closing The Space Launch Information Gap

SpaceX laying off 10 percent of workforce

Mechanisms are Critical to All Space Vehicles

STELLAR CHEMISTRY
Team selected by Canadian Space Agency to study Mars minerals

UK tests self driving robots for Mars

ExoMars mission has good odds of finding life on Mars if life exists.

Mars Express gets festive: A winter wonderland on Mars

STELLAR CHEMISTRY
China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

STELLAR CHEMISTRY
A new era of global aircraft surveillance is on the horizon as Aireon completes system deployment

Australia's 'space city' hosts rising stars from around the globe

Competition for Young Space Entrepreneurs launched

SpaceX Falcon 9 completes Iridium Next launch campaign

STELLAR CHEMISTRY
Kiel physicists discover new effect in the interaction of plasmas with solids

Nebraska leads $11 million study to develop radiation exposure drugs

Penn engineers 3D print smart objects with 'embodied logic'

Raytheon awarded $9.3M contract for Spy-1 radar work

STELLAR CHEMISTRY
Double star system flips planet-forming disk into pole position

The Truth is Out There: New Online SETI Tool Tracks Alien Searches

First comprehensive, interactive tool to track SETI searches

Potential for life on planet around Barnard's Star

STELLAR CHEMISTRY
Scientist Anticipated "Snowman" Asteroid Appearance

New Ultima Thule Discoveries from NASA's New Horizons

New Horizons unveils Ultima and Thule as a binary Kuiper

NASA says faraway world Ultima Thule shaped like 'snowman'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.