. 24/7 Space News .
STELLAR CHEMISTRY
Heavy elements in neutron star mergers detected
by Staff Writers
Darmstadt, Germany (SPX) Oct 17, 2017


Stellar chemistry pays off in many ways...

On October 16 a team of scientists, including members from the LIGO and Virgo collaborations and several astronomical groups, announced the detection of both gravitational and electromagnetic waves, originating from the merger of two neutron stars. These mergers have been speculated as the yet unknown production site of heavy elements including Gold, Platinum and Uranium in the Universe.

In 2010 an international collaboration led by Gabriel Martinez-Pinedo (GSI Helmholtzzentrum fur Schwerionenforschung and Technische Universitat Darmstadt) and Brian Metzger (Columbia University) pointed out that the heavy element synthesis in the merger process leads to a unique electromagnetic wave emission pattern.

The electromagnetic signal observed from the merging neutron stars indeed shows this pattern and confirms that the site for the heavy element production in the Universe is finally found, solving one of the 11 most important question in physics, as named by the US National Academies in 2003.

This breakthrough puts even further focus on the Facility for Antiproton and Iron Research (FAIR), which is currently being built in Darmstadt and at which the short-lived and very neutron-rich nuclei which drive the observed electronmagnetic signal will be produced and studied for the first time.

60 years ago the main processes responsible for the production of elements in the Cosmos were outlined. Since then, it has been possible to identify the astrophysical sites for most of those processes except for the so called r process that is responsible for producing half of the elements heavier than Iron.

It requires an environment with extreme neutron densities, permitting neutron captures on nuclei to proceed much faster than beta-decays. "Identifying the site of the astrophysical origin of elements heavier than Iron is viewed as one of the Millenium problems in physics" says Friedrich-Karl Thielemann, Professor at the University of Basel and now also member of the GSI theory group, who in 1999 performed the first nucleosynthesis study showing that the r-process can operate in material ejected during the coalescence of two merging neutron stars.

Almost simultaneously, it was suggested that the radioactive decay of the freshly synthesized nuclei will trigger an electromagnetic transient. The first realistic modeling of the electromagnetic signal was performed in 2010 by an international team led by Gabriel Martinez-Pinedo and Brian Metzger, including Almudena Arcones, GSI and Technische Universitat Darmstadt, and key experimental guidance from GSI scientists Aleksandra Kelic-Heil and Karl-Heinz Schmidt.

They predicted that such an event will be a thousand times brighter than a nova and will reach its maximum on timescales of a day. It was named "kilonova". This picture has been confirmed by the recent observation of an optical/infrared counterpart associated with GW170817.

This represents a unique case in nuclear astrophysics, as usually astronomers observe a new phenomenon which is much later explained by theorists. In the present case we anticipated a novel astronomical signal without the benefit of observational guidance much before it was confirmed by observations", says Gabriel Martinez-Pinedo.

Several signatures point to the radioactive decay of r-process nuclei to explain the observations. The time dependence of the signal corresponds to what is expected assuming that the energy is produced from the decay of a large ensemble of radioactive nuclei.

Furthermore, the evolution in color of the signal shows that a broad range of r-process nuclei has been produced from the lighter elements with Z ~ 50 to the heavier with Z ~ 82. It has been estimated that GW170817 produced around 0.06 solar masses of r-process ejecta with over ten times Earth's mass in Gold and Uranium.

The LIGO and Virgo collaborations predict that once the gravitational wave detectors reach the design sensitivity in 2019 we may be able to detect neutron star mergers as frequently as once per week.

This will represent a complete change of paradigm in our understanding of heavy element nucleosynthesis demanding high precision nuclear data, in particular of heavy neutron-rich nuclei to reproduce the observations.

It is very fortunate that with FAIR the facility needed to provide these data is already under construction in Darmstadt. First results are expected from experiments performed in the FAIR phase-0 starting 2018.

Once FAIR reaches its complete potential in 2025, it will offer unique physics opportunities to determine the properties of heavy neutron-rich nuclei of relevance to r-process nucleosynthesis.

In the meantime, it is the aim of the GSI theory group to identify key nuclear information to fully characterize the variety of electromagnetic transients expected from neutron star mergers.

+ More about LIGO here

STELLAR CHEMISTRY
Violent helium reaction on white dwarf surface triggers supernova explosion
San Francisco CA (SPX) Oct 09, 2017
An international team of researchers has found evidence a supernova explosion that was first triggered by a helium detonation, reports a new study in Nature this week. A Type Ia supernova is a type of white dwarf star explosion that occurs in a binary star system where two stars are circling one another. Because these supernovae shine 5 billion times brighter than the Sun they are used in ... read more

Related Links
Helmholtz Association
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Russia launches cargo ship to space station

US spacewalkers install 'new eyes' at space station

NASA May Extend BEAM's Time on the International Space Station

USNO Astronomers Measure New Distances To Nearby Stars

STELLAR CHEMISTRY
First Four Space Launch System Flight Engines Ready To Rumble

Rocket motor for Ariane 6 and Vega-C is cast for testing

ASPIRE Successfully Launches from NASA Wallops

RS-25 Engines Ready for Maiden Flight of NASA's Space Launch System

STELLAR CHEMISTRY
What NASA's simulated missions tell us about the need for Martian law

Debate over Mars exploration strategy heats up in astrobiology journal

Opportunity Feeling the Chemistry

Mimetic Martian water is under pressure

STELLAR CHEMISTRY
China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

China's cargo spacecraft separates from Tiangong-2 space lab

STELLAR CHEMISTRY
Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Lockheed Martin Completes First Flexible Solar Array for LM 2100 Satellite

SpaceX launches 10 satellites for Iridium mobile network

GomSpace and Luxembourg to develop space activities in the Grand Duchy

STELLAR CHEMISTRY
Space radiation won't stop NASA's human exploration

Oculus unveils standalone virtual reality headset

Microlasers get a performance boost from a bit of gold

Students, researchers turn algae into renewable flip-flops

STELLAR CHEMISTRY
Biomarker Found In Space Complicates Search For Life On Exoplanets

Are Self-Replicating Starships Practical

New telescope attachment allows ground-based observations of new worlds

The Super-Earth that Came Home for Dinner

STELLAR CHEMISTRY
Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice

Global Aerospace Corporation to present Pluto lander concept to NASA









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.