Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















CHIP TECH
Heating quantum matter: A novel view on topology
by Staff Writers
Brussels, Belgium (SPX) Aug 22, 2017


Probing topology by shaking ultracold atoms in an optical lattice. Credit Credit: IQOQI Innsbruck / Harald Ritsch

In physical sciences, certain quantities appear as integer multiples of fundamental and indivisible elements. This quantization of physical quantities, which is at the heart of our description of Nature, made its way through the centuries, as evidenced by the antique concept of the atom.

Importantly, the discovery of quantized quantities has often been associated with a revolution in our understanding and appreciation of Nature's law, a striking example being the quantization of light in terms of photons, which led to our contemporary (quantum-mechanical) description of the microscopic world.

In an article published in Science Advances, an international team led by Prof. Nathan Goldman - Faculty of Science, Universite libre de Bruxelles - predicts a novel form of quantization law, which involves a distinct type of physical observable: the heating rate of a quantum system upon external shaking.

In order to understand this concept, let us first consider a simpler analogous picture: When an ice cube is placed into a micro-wave oven, the latter excites the water molecules, hence leading to a progressive melting of the ice; during this heating process, the number of molecules that form the ice decreases in time, a process which can be quantified by a heating rate. In the present article, the authors demonstrate how, under specific circumstances, such heating rates must satisfy an elegant and precise quantization law.

Specifically, the authors explain that this phenomenon takes place when a physical system, which initially forms an exotic state of matter (a topological phase), is heated up in a controlled manner; upon heating, particles are ejected from the topological phase (in direct analogy with the melting of ice described above) and the corresponding heating rate is shown to satisfy the aforementioned quantization law.

A crucial aspect of this novel quantization law is that it is dictated by the topological nature of the initial phase of the system, in direct analogy with the quantization of the conductance in solids.

To understand this analogy, we remind that the conductance, which determines the efficiency with which electric currents are generated in a material, can be quantized in terms of a "conductance quantum"; this is the signature of the quantum Hall effect, which was celebrated by two Nobel Prizes, in 1985 and in 1998. Quite surprisingly, this quantization of conductance was shown to be deeply connected to a fundamental mathematical concept: topology.

In short, topology aims to classify geometric objects according to their most elementary characteristics, for instance, their number of holes or winding. This elegant relation between the physical quantization of conductance and the abstract concept of topology opened the door to the exploration of a wide family of exotic states of matter, the so-called topological phases, whose discovery was recently honored by the 2016 Nobel Prize in Physics.

The discovery reported by the international team led by Prof. Goldman thus offers a novel perspective on the intriguing links between quantization laws in physics and topology.

Besides the elegance of this novel quantization law for heating rates, this discovery has an important corollary: heating up a quantum system can be used as a universal probe for exotic states of matter. The authors propose a physical platform that is particularly well suited for its experimental realization: an ultracold gas of atoms trapped in an optical lattice (a periodic landscape created by light).

Such setups are known to constitute an ideal toolbox for the quantum-engineering of topological matter, but also, for implementing new types of measurements.

In practice, the proposed experiment would consist in preparing a topological phase, by loading an ultracold gas into an optical lattice, and in subsequently shaking this lattice in a circular manner; the resulting heating rates would then be extracted by measuring the number of atoms that remained in the topological phase after a certain duration of shaking.

CHIP TECH
New ultrathin semiconductor materials exceed some of silicon's 'secret' powers
Stanford CA (SPX) Aug 17, 2017
The next generation of feature-filled and energy-efficient electronics will require computer chips just a few atoms thick. For all its positive attributes, trusty silicon can't take us to these ultrathin extremes. Now, electrical engineers at Stanford have identified two semiconductors - hafnium diselenide and zirconium diselenide - that share or even exceed some of silicon's desirable traits, s ... read more

Related Links
Universite libre de Bruxelles
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA launches latest TDRS communications satellite

Turning human waste into plastic, nutrients could aid long-distance space travel

NASA Offers Space Station as Catalyst for Discovery in Washington

System tests prepare Orion for deep space exploration

CHIP TECH
The Phantom Lunar Dragon

Equipment for Angara heavy-class rocket arrives at Vostochny Cosmodrome

Soyuz-2 Rocket to Arrive at Vostochny on September 20 for November Launch

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

CHIP TECH
The Moving Martian Bow Shock

Mars weather: 'Cloudy, chance of nighttime snowstorm'

Mars 2020 mission to use smart methods to seek signs of past life

For Moratorium on Sending Commands to Mars, Blame the Sun

CHIP TECH
China's satellite sends unbreakable cipher from space

Xian Satellite Control Center resolves over 10 major satellite faults in 50 years

China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

CHIP TECH
Bids for government funding prove strong interest in LaunchUK

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Blue Sky Network Reaffirms Commitment to Brazilian Market

CHIP TECH
The critical point in breaking the glass problem

Researchers use vacuum for hands-free patterning of liquid metal

Surprise discovery in the search for energy efficient information storage

NASA protects its super heroes from space weather

CHIP TECH
Earth-like planet in star system only 16 light years away

A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

CHIP TECH
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement