. 24/7 Space News .
ENERGY TECH
Heat and sound wave interactions in solids could run engines, refrigerators
by Staff Writers
West Lafayette, IN (SPX) May 11, 2018

Researchers envision thermoacoustics in solids eventually harnessing the extreme temperature gradient of outer space for electricity on satellites.

A solid can serve as a medium for heat and sound wave interactions just like a fluid does for thermoacoustic engines and refrigerators - resulting in leak-free machines that can stay operating longer.

Leaky systems have limited how engineers design thermoacoustic devices that rely on the interplay between temperature oscillations and sound waves.

Researchers at Purdue and the University of Notre Dame have demonstrated for the first time that thermoacoustics could theoretically occur in solids as well as fluids, recently presenting their findings at the 175th Meeting of the Acoustical Society of America.

"Although still in its infancy, this technology could be particularly effective in harsh environments, such as outer space, where strong temperature variations are freely available and when system failures would endanger the overall mission," said Fabio Semperlotti, Purdue assistant professor of mechanical engineering.

Thermoacoustics has been an established and well-studied phenomenon in fluids - whether as a gas or liquid - for centuries. "Applying heat to a fluid enclosed in a duct or cavity will cause the spontaneous generation of sound waves propagating in the fluid itself," said Carlo Scalo, an assistant professor of mechanical engineering at Purdue. "This results in so-called singing pipes, or thermoacoustics machines."

While fluids have been historically used for these systems, the extra step of building something to contain the fluids and prevent leaks is cumbersome. This led the researchers to consider solids as a replacement.

"Properties of solids are more controllable, which could make them potentially better suited to these applications than fluids. We needed to first verify that this phenomenon could theoretically exist in solid media," said Haitian Hao, Purdue graduate research assistant in mechanical engineering.

Thermoacoustics enables either waste heat or mechanical vibrations to be converted into other useful forms of energy. For refrigerators, sound waves generate a temperature gradient of hot and cold. The vibrating motion makes cold areas colder and hot areas hotter.

Engines use an opposite process: a temperature gradient provided by waste heat leads to mechanical vibrations.

Solid state thermoacoustics initially seemed unlikely, since solids are somewhat more "stable" than fluids and tend to dissipate mechanical energy more readily, making it harder for heat to generate sound waves.

The researchers developed a theoretical model demonstrating that a thin metal rod can exhibit self-sustained mechanical vibrations if a temperature gradient is periodically applied to segments of the rod. This balanced unwanted mechanical energy dissipation and showed that, like fluids, solids contract when they cool down and expand when they heat up. If the solid contracts less when cooled and expands more when heated, the resulting motion will increase over time.

Solids can also be engineered to achieve the needed properties for achieving high thermoacoustics performance. "Fluids do not allow us to do this," Semperlotti said.

Extreme temperature differences in space would be perfect for generating mechanical vibrations that are then converted to electrical energy on spacecraft.

"A solid state device would use the sun as its heat source and radiation towards deep space as its cold source," Semperlotti said. "These systems could operate indefinitely, given that they do not have any part in motion or fluid that could leak out."

Researchers still need to complete an experimental setup to validate this design idea and better understand the thermoacoustics of solids as discovered through mathematical calculations and modeling.

"Possible applications and performance of these devices are still in the realm of pure speculation at this point," Semperlotti said. "But the phenomenon exists and it has the potential to open some remarkable directions for the design of thermoacoustic devices."

"Thermoacoustics of solids: A pathway to solid state engines and refrigerators" https://doi.org/10.1063/1.500648
Related Links
Purdue University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
A novel voltage peak in the metal nanowire-superconductor hybrid structure
Beijing, China (SPX) May 03, 2018
Superconductivity, known as a quantum state with zero resistance and perfect diamagnetism, has attracted great attention in physical science. Due to the quantum size effect, low dimensional superconducting systems can exhibit novel behaviors different from bulk situation. Particularly, the investigations on strong spin-orbit coupling or ferromagnetic nanowires with superconducting contacts have become a research highlight in connection with the exploration of topological superconductivity and topo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Russia Offers Space Tourist Flight to US, European Astronauts, UAE Citizen

The challenge of space gardening: One giant 'leaf' for mankind

Tourism nearly a tenth of global CO2 emissions

Jim Bridenstine brings understanding of commercial technology to his new role as NASA Admin

ENERGY TECH
TDM Bridge Builder: Daniel Herman, Solar Electric Propulsion System Lead

SpaceX launches most powerful Falcon 9 yet

SpaceX postpones next-gen rocket launch

Reduce, Reuse, Rockets?

ENERGY TECH
Mars growth stunted by early giant planetary instability

Mars Helicopter to Fly on NASA's Next Red Planet Rover Mission

InSight probe to survey Mars for secrets inside the planet

One scientist's 30-year quest to get under Mars' skin

ENERGY TECH
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

ENERGY TECH
ESA selects three new mission concepts for study

In crowded field, Iraq election hopefuls vie to stand out

China's communication satellites occupy niche in world market

UK may set up satellite program separate from EU

ENERGY TECH
Telephonics contracted for Coast Guard radar systems

Lasers in Space: Earth Mission Tests New Technology

It all comes down to roughness

Mining for gold with a computer

ENERGY TECH
Atmospheric seasons could signal alien life

Dutch astronomers photograph possible toddler planet by chance

ANU study sheds new light on how our solar system formed

The Cheops ccience instrument arrives in Madrid

ENERGY TECH
New views of Jupiter" showcases swirling clouds on giant planet

Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.