. 24/7 Space News .
STELLAR CHEMISTRY
HAWC Gamma-Ray Observatory's reveals the very-high-energy sky
by Staff Writers
College Park MD (SPX) Apr 20, 2016


The complete array of HAWC detector tanks is seen here in Dec. 2014.

The United States and Mexico constructed the High Altitude Water Cherenkov (HAWC) Gamma-ray Observatory to observe some of the most energetic phenomena in the known universe - the aftermath when massive stars die, glowing clouds of electrons around rapidly spinning neutron stars, and supermassive black holes devouring matter and spitting out powerful jets of particles. These violent explosions produce high-energy gamma rays and cosmic rays, which can travel large distances - making it possible to see objects and events far outside our own galaxy.

Today, scientists operating HAWC released a new survey of the sky made from the highest energy gamma rays ever observed. The new sky map, which uses data collected since the observatory began running at full capacity last March, offers a deeper understanding of high-energy processes taking place in our galaxy and beyond.

"HAWC gives us a new way to see the high-energy sky," said Jordan Goodman, professor of physics at the University of Maryland, and U.S. lead investigator and spokesperson for the HAWC collaboration. "This new data from HAWC shows the galaxy in unprecedented detail, revealing new high-energy sources and previously unseen details about existing sources."

HAWC researchers presented the new observation data and sky map April 18, 2016, at the American Physical Society meeting. They also participated in a press conference at the meeting.

The new sky map shows many new gamma ray sources within our own Milky Way galaxy. Because HAWC observes 24 hours per day and year-round with a wide field-of-view and large area, the observatory boasts a higher energy reach especially for extended objects. In addition, HAWC can uniquely monitor for gamma ray flares by sources in our galaxy and other active galaxies, such as Markarian 421 and Markarian 501.

One of HAWC's new observations provides a better understanding of the high-energy nature of the Cygnus region - a northern constellation lying on the plane of the Milky Way. A multitude of neutron stars and supernova remnants call this star nursery home. HAWC scientists observed previously unknown objects in the Cygnus region and identified objects discovered earlier with sharper resolution.

In a region of the Milky Way where researchers previously identified a single gamma ray source named TeV J1930+188, HAWC identified several hot spots, indicating that the region is more complicated than previously thought.

"Studying these objects at the highest energies can reveal the mechanism by which they produce gamma rays and possibly help us unravel the hundred-year-old mystery of the origin of high-energy cosmic rays that bombard Earth from space," said Goodman.

HAWC - located 13,500 feet above sea level on the slopes of Mexico's Volcan Sierra Negra - contains 300 detector tanks, each holding 50,000 gallons of ultrapure water with four light sensors anchored to the floor.

When gamma rays or cosmic rays reach Earth's atmosphere they set off a cascade of charged particles, and when these particles reach the water in HAWC's detectors, they produce a cone-shaped flash of light known as Cherenkov radiation. The effect is much like a sonic boom produced by a supersonic jet, because the particles are traveling slightly faster than the speed of light in water when they enter the detectors.

The light sensors record each flash of Cherenkov radiation inside the detector tanks. By comparing nanosecond differences in arrival times at each light sensor, scientists can reconstruct the angle of travel for each particle cascade. The intensity of the light indicates the primary particle's energy, and the pattern of detector hits can distinguish between gamma rays and cosmic rays. With 300 detectors spread over an area equivalent to more than three football fields, HAWC "sees" these events in relatively high resolution.

"Unlike traditional telescopes, with HAWC we have now an instrument that surveys two-thirds of the sky at the highest energies, day and night," said Andres Sandoval, Mexico spokesperson for HAWC.

HAWC exhibits 15-times greater sensitivity than its predecessor - an observatory known as Milagro that operated near Los Alamos, New Mexico, and ceased taking data in 2008. In eight years of operation, Milagro found new sources of high-energy gamma rays, detected diffuse gamma rays from the Milky Way galaxy and discovered that the cosmic rays hitting Earth had an unexpected non-uniformity.

"HAWC will collect more data in the next few years, allowing us to reach even higher energies," said Goodman. "Combining HAWC observations with data from other instruments will allow us to extend the reach of our understanding of the most violent processes in the universe."

HAWC is a joint collaboration between the United States and Mexico that includes over 120 scientists from 25 universities and national laboratories. Goodman led a team of UMD physicists that pioneered development of the observatory and managed its construction from 2011 until 2015.

In addition to Goodman, other collaborators from the UMD Department of Physics have included associate research scientist Andrew J. Smith; postdoctoral researchers Brian Baughman, James Braun, Daniel Fiorino and Colas Riviere; and graduate students Israel Martinez Castellanos, Kristi Engel and Joshua Wood.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
High Altitude Water Cherenkov
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
NASA celebrates 25 years of breakthrough gamma-ray science
Greenbelt MD (SPX) Apr 08, 2016
Twenty-five years ago this week, NASA launched the Compton Gamma Ray Observatory, an astronomical satellite that transformed our knowledge of the high-energy sky. Over its nine-year lifetime, Compton produced the first-ever all-sky survey in gamma rays, the most energetic and penetrating form of light, discovered hundreds of new sources and unveiled a universe that was unexpectedly dynamic and d ... read more


STELLAR CHEMISTRY
Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

STELLAR CHEMISTRY
Rover mini-walkabout to find clay mineral continues

First light for ExoMars

Russia, Italy plan first bid to explore beneath mars surface in 2018

First joint EU-Russian ExoMars mission to reach Mars orbit Oct 16

STELLAR CHEMISTRY
NASA blasts Orion Service Module with giant horns

Mobile phone technology propels Starshot's ET space search

Concept's success buoys Commercial Crew's path to flight

A US Department of Space

STELLAR CHEMISTRY
Chinese scientists develop mammal embryos in space for first time

China begins testing Tiangong-2 space lab

Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

STELLAR CHEMISTRY
15 years of Europe on the International Space Station

BEAM successfully installed to the International Space Station

NASA to test first expandable habitat on ISS

Dragon and Cygnus To Meet For First Time In Space

STELLAR CHEMISTRY
Arianespace cooperation with Russia remains smooth amid sanctions

Orbital ATK awarded major sounding rocket contract by NASA

SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

STELLAR CHEMISTRY
University of Massachusetts Lowell PICTURE-B Mission Completed

Lone planetary-mass object found in family of stars

Stars strip away atmospheres of nearby super-Earths

1917 astronomical plate has first-ever evidence of exoplanetary system

STELLAR CHEMISTRY
Students observe damaged Hitomi X-ray satellite and debris

Why sailing to the stars has suddenly become a realistic goal

Strathclyde-led project to open up space technology to new nations

Progress of simulating dynamics in heterogeneous materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.