. 24/7 Space News .
ENERGY TECH
Gravity crystals: A new method for exploring the physics of white dwarf stars
by Staff Writers
Fort Lauderdale FL (SPX) Oct 23, 2019

Bird's eye view of a gravity crystal using mm-sized aluminum spheres placed on a conductive bowl-shaped surface. High voltage from a Van de Graaff generator was applied across the bottom surface (graphite) and a transparent conductive window placed a few cm above the balls. Once charged, the aluminum spheres repel one another, eventually forming a periodic pattern with both short- and long-range order.

Grab a mixing bowl from your kitchen, throw in a handful of aluminum balls, apply some high voltage, and watch an elegant dance unfold where particles re-arrange themselves into a distinct "crystal" pattern. This curious behavior belongs to the phenomenon known as Wigner crystallization, where particles with the same electrical charge repel one another to form an ordered structure (Figure 1).

Wigner crystallization has been observed in variety of systems, ranging from particulates the size of sand grains suspended in small clouds of electrons and ions (called a dusty plasma) to the dense interiors of planet-sized stars, known as white dwarfs. Professor Alex Bataller of North Carolina State University has recently discovered that Wigner crystallization inside white dwarfs can be studied in the lab using a new class of classical systems, called gravity crystals.

For the curious behavior of Wigner crystallization to occur, there must be a system composed of charged particles that are both free to move about (plasma), that strongly interact with each other (strongly coupled particles), and has the presence of a confining force to keep the plasma particles from repulsively exploding away from each other.

To study this condition for small scales in the laboratory, Dr. Bataller devised a new arrangement that places metal spheres in contact with a high voltage confining surface, which charges the spheres by transferring hundreds of millions of electrons to their surface, and thereby increases particle repulsion, and also keeps the particles contained. In addition, when the spheres roll over the surface, their motion produces friction that quickly reduces kinetic energy and promotes strong coupling.

The key insight that enabled the present discovery was to use gravity as the confining force. In this way, small charged spheres can be gravitationally confined using a simple geometry...a bowl.

By using gravitational confinement, Dr. Bataller discovered that Wigner crystallization can also be extended to macroscopic dimensions with particles a million times more massive than its dusty plasma cousin, which can now be used to study other crystal systems. For example, gravity crystals can simulate a curious feature of white dwarf stars called sedimentation. It was recently discovered that stratified crystal layers can form within white dwarf stars containing oxygen and carbon, where the heavier oxygen "sinks" to the core.

The gravity crystal arrangement (Figure 2) reproduces this layering effect when applying high voltage to an initially mixed system of copper and aluminum balls. Analogous to sedimentation in white dwarf stars, the copper balls gravitate toward the bowl center while maintaining a crystal structure.

The plasma properties and external environment of a gravity crystal and a white dwarf star are as different as one can imagine, yet both systems exhibit similar behavior, which speaks to the robust nature of Wigner crystallization.

"The rich diversity of systems where we've observed Wigner crystallization is a direct result of its scale-independent nature," Dr. Bataller said. "Gravity crystals extend this phenomenon to human dimensions while needing minimal resources. What excites me most about this new platform is that virtually any curious individual can recreate this fascinating state of matter that, until now, has been limited to million-dollar experiments and within the dense interior of stars."


Related Links
American Physical Society
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
New plasma wave accelerator propels electrons to record speeds
Washington (UPI) Oct 21, 2019
Scientists have set a new record for electron acceleration using a plasma wave accelerator. The new technology produced electron beams with energies up to 7.8 billion electron volts across an 8-inch-long plasma wave. Particle accelerators are essential to advanced particle physics and the quest to solve the great mysteries of the cosmos. But today's particle accelerators are massive, requiring miles of underground space. They also cost millions of dollars to construct. To advance the fie ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Huntsville to Host NASA's 2019 International Space Apps Challenge

Meir, Koch complete first all-female spacewalk

Virgin Galactic unveils commercial space suits

Under Armour, Virgin Galactic reveal suits to be worn by space tourists

ENERGY TECH
Russia eyes launching satellite into orbit from Saudi Arabia

NASA commits to future Artemis missions with more SLS rocket stages

U.S. Army to deploy hypersonic missiles by 2023

Space and Missile Systems Center completes summer launch campaign; with small launchers next focus

ENERGY TECH
MRO HiRISE camera views InSight and Curiosity on Mars

ExoMars parachute progress

Global analysis of submarine canyons may shed light on Martian landscapes

River relic spied by Mars Express

ENERGY TECH
China's rocket-carrying ships depart for transportation mission

China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

ENERGY TECH
OmegA team values partnerships with customer, suppliers

Call for innovation to advance Europe's lab in space

Competition to find business ideas that are out of this world

UK space skills support sustainable development

ENERGY TECH
Physicists shed new light on how liquids behave with other materials

Analysis of Galileo's Jupiter entry probe reveals gaps in heat shield modeling

Unique sticky particles formed by harnessing chaos

Celebrating a mission that changed how we use radar

ENERGY TECH
The search for extrasolar planets continues

The blob is real: Paris zoo showcases self-healing organism with 720 sexes

Gas 'waterfalls' reveal infant planets around young star

Using AI to determine exoplanet sizes

ENERGY TECH
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.