. 24/7 Space News .
CARBON WORLDS
Graphene oxide making any material suitable to create biosensors
by Staff Writers
Tomsk, Russia (SPX) Nov 28, 2017


Single cell immobilization on GO modified substrates.

TPU scientist Raul Rodrigez and his colleagues from Lithuania and Germany were the first in the world to suggest how with the help of graphene oxide, in fact ordinary graphene as in pencils, but oxidized to make the surface of any material suitable for immobilization of living cells.

Devices with such coatings will make it possible to detect and study individual living cells, including dangerous microorganisms, cancer cells and dangerous substances in the human body. In future, this technology will allow creating flexible diagnostic devices implanted under the skin. The study outcomes were published in Sensors and Actuators B: Chemical.

The study was conducted by the researchers from Tomsk Polytechnic University, the University of Vilnius, the Center for Physical Sciences and Technology (Lithuania) and the Chemnitz University of Technology (Germany).

'Medical scientists are still trying to find an answer to the question related to metastatic spread. Studying communication of cells in the process of their formation is a possible answer to this question. For this purpose it is necessary to be able to distinguish the behavior of bulk cell samples from the behavior of single cells,' - tells Professor Raul Rodrigez from the Department of Lasers and Lighting Engineering.

The technology developed by Tomsk scientists and their colleagues allows monitoring cell colonies and separate the cells of interest from all the others. Moreover, it will be more affordable than existing counterparts.

He adds that the study of communication and interaction of cells is currently important for many areas in medicine. The same technology can help in the development of biosensors.

'When creating biosensors there is the same problem as when creating implants which are implanted into the human body. In implants the interaction of cells with their surface is determined by wettability. Wettable surfaces enhance the attachment of living cells to bioimplants, as well as their proliferation and so on. The surface of biosensors should also be well wetted so that we can ensure the attachment of cells or bacteria to the sensors,' says Professor Rodrigez.

The scientist explains that water can help understand what a wettable or hydrophilic surface means. When water droplets fall on the surface of a material and spread over it, it means that the interaction between the droplets and the surface is high and the material is hydrophilic. If water droplets gather in balls, the interaction between water molecules with each other is more than with the surface, it means the material is hydrophobic.

'The simple technology using graphene oxide allows us to make any material hydrophilic and therefore suitable for creating inexpensive biosensors,' - says TPU professor.

In their work the scientists demonstrated this effect by the example of ordinary yeast cells deposited on several arbitrary substrates of glass, silicon and other materials coated with graphene oxide. The study results showed that cells are well attached to modified substrates.

Such improved surfaces led to the appearance of areas where single cells could be observed. Figuratively speaking, cells fell into 'traps' and could not come together, as it usually does on surface. Using this property, it would be possible to study how cells behave in the isolated state and compare their behavior in the colony.

For manufacturing biosensors it is supposed to create electrical contacts on the same coating.

Research paper

CARBON WORLDS
Evaluation of novel hybrid membranes for carbon capture
Tokyo, Japan (SPX) Nov 30, 2017
Carbon dioxide (CO2) capture remains a priority in many countries as the world seeks to address climate change. In particular, the most recent report from the Intergovernmental Panel on Climate Change shows that geological storage of carbon dioxide is required for all scenarios that can meet 430 - 550 ppm CO2 atmospheric concentrations (Working Group III, IPCC 5th Assessment Report, 2014). ... read more

Related Links
Tomsk Polytechnic University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
New motion sensors major step towards cheaper wearable technology

Does the Outer Space Treaty at 50 need a rethink

NASA to send critical science, instruments to Space Station

Can a magnetic sail slow down an interstellar probe

CARBON WORLDS
Russia to build launch pad for super heavy-lift carrier by 2028

Mechanisms are critical to all space vehicles

Russia loses contact with satellite after launch from new spaceport

Flat-Earther's self-launch plan hits a snag

CARBON WORLDS
Gadgets for Mars

Ice shapes the landslide landscape on Mars

Winds Blow Dust off the Solar Panels Improving Energy Levels

Previous evidence of water on Mars now identified as grainflows

CARBON WORLDS
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

CARBON WORLDS
Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

Need to double number of operational satellites: ISRO chief

Space Launch plans UK industry tour

CARBON WORLDS
Saab intros augmented reality training tool for military

New way to write magnetic info could pave the way for hardware neural networks

Device could reduce the carbon footprint of ethylene production

Researchers inadvertently boost surface area of nickel nanoparticles for catalysis

CARBON WORLDS
Mexico's Yucatan Peninsula reveals a cryptic methane-fueled ecosystem in flooded caves

Researchers prolong life by curbing common enzyme

First known interstellar visitor is an 'oddball'

Lava or Not, Exoplanet 55 Cancri e Likely to have Atmosphere

CARBON WORLDS
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.