Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



CARBON WORLDS
Graphene: A quantum of current
by Staff Writers
Vienna, Austria (SPX) May 24, 2016


Electron wave passing through a narrow constriction. Image courtesy TU Wien. For a larger version of this image please go here.

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms arranged in a honeycomb lattice. But graphene research did not stop there. New interesting properties of this material are still being found. An international team of researchers has now explained the peculiar behaviour of electrons moving through narrow constrictions in a graphene layer. The results have been published in the journal Nature Communications.

"When electrical current flows through graphene, we should not imagine the electrons as little balls rolling through the material", says Florian Libisch from TU Wien (Vienna), who led the theoretical part of the research project. The electrons swash through the graphene as a long wave front, the wavelength can be a hundred times larger than the space between two adjacent carbon atoms. "The electron is not confined to one particular carbon atom, in some sense it is located everywhere at the same time", says Libisch.

The team studied the behaviour of electrons squeezing through a narrow constriction in a graphene sheet. "The wider the constriction, the larger the electron flux - but as it turns out, the relationship between the width of the constriction, the energy of the electrons and the electric current is quite complex", says Florian Libisch. "When we make the constriction wider, the electric current does not increase gradually, it jumps at certain points. This is a clear indication of quantum effects."

If the wavelength of the electron is so large that it does not fit through the constriction, the electron flux is very low.

"When the energy of the electron is increased, its wavelength decreases", explains Libisch. "At some point, one wavelength fits through the constriction, then two wavelengths, then three - this way the electron flux increases in characteristic steps." The electric current is not a continuous quantity, it is quantized.

Theory and Experiment
This effect can also be observed in other materials. Detecting it in graphene was much more difficult, because its complex electronic properties lead to a multitude of additional effects, interfering with each other. The experiments were performed at the group of Christoph Stampfer at the RWTH Aachen (Germany), theoretical calculations and computer simulations were performed in Vienna by Larisa Chizhova and Florian Libisch at the group of Joachim Burgdorfer.

For the experiments, the graphene sheets hat to be etched into shape with nanometre precision. "Protecting the graphene layer by sandwiching it between atomic layers of hexagonal boron nitride is critical for demonstrating the quantized nature of current in graphene" explains Christoph Stampfer. Current through the devices is then measured at extremely low temperatures.

"We use liquid helium to cool our samples, otherwise the fragile quantum effects are washed out by thermal fluctuations" says Stampfer. Simulating the experiment poses just as much of a challenge. "A freely moving electron in the graphene sheet can occupy as many quantum states as there are carbon atoms", says Florian Libisch, "more than ten million, in our case."

This makes the calculations extremely demanding. An electron in a hydrogen atom can be described using just a few quantum states. The team at TU Wien (Vienna) developed a large scale computer simulation and calculated the behaviour of the electrons in graphene on the Vienna Scientific Cluster VSC, using hundreds of processor cores in parallel.

Edge States
As it turns out, the edge of the graphene sheet plays a crucial role. "As the atoms are arranged in a hexagonal pattern, the edge can never be a completely straight line. On an atomic scale, the edge is always jagged", says Florian Libisch. In these regions, the electrons can occupy special edge states, which have an important influence on the electronic properties of the material.

"Only with large scale computer simulations using the most powerful scientific computer clusters available today, we can find out how these edge states affect the electrical current", says Libisch. "The excellent agreement between the experimental results and our theoretical calculations shows that we have been very successful."

The discovery of graphene opened the door to a new research area: ultrathin materials which only consist of very few atomic layers are attracting a lot of attention. Especially the combination of graphene and other materials - such as boron nitride, as in this case - is expected to yield interesting results. "One thing is for sure: whoever wants to understand tomorrow's electronics has to know a lot about quantum physics", says Florian Libisch.

Research paper: "Size quantization of Dirac fermions in graphene constrictions", Nature Communications, DOI: 10.1038/NCOMMS11528


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Vienna University of Technology
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Unveiling the electron's motion in a carbon nanocoil
Toyohashi, Japan (SPX) May 19, 2016
Carbon nanocoils (CNCs) are an exotic class of low-dimensional nanocarbons whose helical shape may make them suitable for applications such as microwave absorbers and various mechanical components such as springs. Typical thicknesses and coil diameters of CNCs fall within the ranges of 100-400 nm and 400-1000 nm, respectively, and their full lengths are much larger, on the order of several tens ... read more


CARBON WORLDS
SwRI scientists discover fresh lunar craters

NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

CARBON WORLDS
Are mystery Mars plumes caused by space weather?

Opportunity takes panorama; uses wheel to scuff soil

Ancient tsunami evidence on Mars reveals life potential

Hubble Takes Mars Portrait Near Close Approach

CARBON WORLDS
Airbus Defence and Space starts Orion service module assembly

Space travel now in a parachute soon available

Interns Make Archived NASA Planetary Science Data More Accessible

Out of this world: 'Moon and Mars veggies' grow in Dutch greenhouse

CARBON WORLDS
China's new launch center prepares for maiden mission

China, U.S. hold first dialogue on outer space safety

Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

CARBON WORLDS
International Space Cooperation Strongest in Times of Political Crises

Alexander Gerst to be Space Station commander

ISS completes 100,000th orbit of Earth: mission control

Canadian astronaut to join ISS in 2018

CARBON WORLDS
UK's First Spaceport Could Be Beside the Sea

SpaceX Return of Samples Marks Next Step in One-Year Mission Science

Arianespace to supply payload dispenser systems for OneWeb constellation

Arianespace's Soyuz is approved for its early morning liftoff on May 24

CARBON WORLDS
Kepler-223 System Offers Clues to Planetary Migration

Star Has Four Mini-Neptunes Orbiting in Lock Step

Exoplanets' Orbits Point to Planetary Migration

Synchronized planets reveal clues to planet formation

CARBON WORLDS
Precise measurements on earth ensure NASA's spacecraft work in space

How the giant magnetoelectric effect occurs in bismuth ferrite

Rice de-icer gains anti-icing properties

Combining nanotextures with Leidenfrost effect for water repellency




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement