Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















STELLAR CHEMISTRY
Giant gas cloud boomeranging back into Milky Way
by Staff Writers
Notre Dame IN (SPX) Jan 29, 2016


This graphic shows how researchers used the Hubble Space Telescope to view three distant galaxies through the Smith Cloud, a technique that helped them determine the makeup of the cloud. Image courtesy NASA. For a larger version of this image please go here.

Since astronomers discovered the Smith Cloud, a giant gas cloud plummeting toward the Milky Way, they have been unable to determine its composition, which would hold clues as to its origin. University of Notre Dame astrophysicist Nicolas Lehner and his collaborators have now determined that the cloud contains elements similar to our sun, which means the cloud originated in the Milky Way's outer edges and not in intergalactic space as some have speculated.

The Smith Cloud, discovered in the 1960s, is the only high-velocity cloud in the galaxy for which its orbit is well-determined, thanks in particular to studies with radio telescopes like the Green Bank Telescope (GBT). The starless gas cloud is traveling at nearly 700,000 miles per hour and is expected to crash into the Milky Way disk in 30 million years. If it were visible, the Smith Cloud would have an apparent size of about 30 times the diameter of the moon from tip to tail.

Astronomers long thought that the Smith Cloud might be some starless galaxy or gas falling into the Milky Way from intergalactic space. If that were the case, the cloud composition would be mainly hydrogen and helium, not the heavier elements made by stars.

The team used Hubble to determine for the first time the amount of heavier elements relative to hydrogen in the Smith Cloud. Using Hubble's Cosmic Origins Spectrograph, the researchers observed the ultraviolet light from the bright cores of three active galaxies that reside billions of light-years beyond the cloud.

The Smith Cloud absorbs some of its light in very small wavelength range, and by measuring the dip in brightness of these galaxies behind the cloud, the chemical makeup of the cloud can be estimated.

The researchers looked specifically for absorption from the sulfur element, which is a good gauge of how many heavier elements reside in the cloud. "By measuring sulfur, you can learn how enriched in sulfur atoms the cloud is compared to the Sun," said team leader Andrew Fox of the Space Telescope Science Institute in Baltimore.

The team then compared Hubble's sulfur measurements to hydrogen measurements made by the GBT.

The astronomers found that the Smith Cloud is as rich in sulfur as the Milky Way's outer disk, a region about 40,000 light-years from the galaxy's center and about 15,000 light-years farther out than our sun and solar system are. This means that it was polluted by material from stars.

This would not happen if it were pristine hydrogen from outside the galaxy. Instead, the cloud appears to have had an intimate relationship with the Milky Way, but was somehow ejected from the outer Milky Way disk about 70 million years ago and is now boomeranging back onto its disk.

Astronomers believe the Smith Cloud, has enough gas to generate two million suns when it eventually hits the Milky Way disk. "We have found several massive gas clouds in the Milky Way halo that may serve as future fuel for star formation in its disk, but, for most of them, their origins remain a mystery.

The Smith Cloud is certainly one of the best examples that shows that recycled gas is an important mechanism in the evolution of galaxies," said Lehner.

The study, titled "On the Metallicity and Origin of the Smith High-velocity Cloud," was published this month in the Astrophysical Journal Letters. Fox, Lehner and co-author Jay Lockman of the National Radio Astronomy Observatory discussed the discovery during the Space Telescope Science Institute Hubble Hangout on Thursday (Jan. 28).

.


Related Links
University of Notre Dame
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
The Milky Way's clean and tidy galactic neighbor
Munich, Germany (SPX) Jan 28, 2016
IC 1613 is a dwarf galaxy in the constellation of Cetus (The Sea Monster). This VST image shows the galaxy's unconventional beauty, all scattered stars and bright pink gas, in great detail. German astronomer Max Wolf discovered IC 1613's faint glow in 1906. In 1928, his compatriot Walter Baade used the more powerful 2.5-metre telescope at the Mount Wilson Observatory in California to succe ... read more


STELLAR CHEMISTRY
Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

STELLAR CHEMISTRY
Mars Rover Opportunity Busy Through Depth of Winter

Getting real - on Mars

India to Cooperate With France on Next Mission to Mars

Opportunity rock abrasion tool conducts two rock grinds

STELLAR CHEMISTRY
Challenger disaster at 30: Did the tragedy change NASA for the better?

Voyager Mission Celebrates 30 Years Since Uranus

Arab nations eye China, domestic market to revive tourism

2016 Goals Vital to Commercial Crew Success

STELLAR CHEMISTRY
Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

STELLAR CHEMISTRY
Russian Cosmonauts to Attach Thermal Insulation to ISS

Astronaut Scott Kelly plays ping pong with water

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

STELLAR CHEMISTRY
SpaceX Tests Crew Dragon Parachutes

70th consecutive successful launch for Ariane 5

Arianespace's year-opening Ariane 5 mission is approved for launch

SpaceX Falcon 9 upgrade certified for National Security Space launches

STELLAR CHEMISTRY
Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

STELLAR CHEMISTRY
Mysterious behavior of quantum liquid elucidated, a world first

Beetle-inspired discovery could reduce frost's costly sting

Laser Debris Shields

Acoustic tweezers provide much needed pluck for 3-D bioprinting




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.