Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Galactic crashes fuel quasars
by Staff Writers
New Haven CT (SPX) Jun 22, 2015


New research indicates that quasars are born when galaxies crash. Image courtesy Michael S. Helfenbein/Yale University. For a larger version of this image please go here.

When galaxies collide, bright things happen in the universe. Using the Hubble Space Telescope's infrared vision, astronomers have unveiled some of the previously hidden origins of quasars, the brightest objects in the universe. A new study finds that quasars are born when galaxies crash into each other and fuel supermassive, central black holes.

"The Hubble images confirm that the most luminous quasars in the universe result from violent mergers between galaxies, which fuels black hole growth and transforms the host galaxies," said C. Megan Urry, the Israel Munson Professor of Astronomy and Astrophysics at Yale University, and co-author of the study published online June 18 in The Astrophysical Journal.

"These mergers are also the sites of future black hole mergers, which we hope will one day be visible with gravitational wave telescopes," Urry said.

Quasars emit a light as bright as that of one trillion stars. Over the past two decades, researchers have concluded that the energy for quasars comes from supermassive black holes inside the cores of distant galaxies.

But where do the supermassive black holes get their fuel? It had been theorized previously that such energy could come from the merger of two galaxies. The new study confirms it by using Hubble's sensitivity at near-infrared wavelengths of light to see past the intense glow of the quasar, to the host galaxies themselves.

"The Hubble observations are telling us that the peak of quasar activity in the early universe is driven by galaxies colliding and then merging together," said Eilat Glikman of Middlebury College in Vermont, lead author of the study and a former Yale postdoctoral researcher. "We are seeing the quasars in their teenage years, when they are growing quickly and all messed up."

Glikman decided to look for "dust reddened quasars" in several ground-based infrared and radio sky surveys. These quasars are enveloped in dust, dimming their visible light.

Using Hubble's Wide Field Camera 3, Glikman looked at 11 such quasars from the peak of the universe's star-formation era, 12 billion years ago. "The new images capture the dust-clearing transitional phase of the merger-driven black hole scenario," Glikman said. "The Hubble images are both beautiful and descriptive."

Other authors of the study were Brooke Simmons of Oxford University, a former graduate student at Yale; Madeline Mailly of Middlebury College; Kevin Schawinski of ETH Zurich, a former Einstein Fellow at Yale; and M. Lacy of the National Radio Astronomy Observatory in Charlottesville, Va.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Yale University
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Best observational evidence yet of first-generation stars in the universe
Riverside CA (SPX) Jun 22, 2015
Astronomers using the European Southern Observatory's Very Large Telescope (VLT) have discovered by far the brightest galaxy yet found in the early universe and found strong evidence that examples of the first generation of stars lurk within it. University of California, Riverside astronomers are members of the team that made the discovery. The astronomers, led by David Sobral of the Unive ... read more


STELLAR CHEMISTRY
Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

STELLAR CHEMISTRY
Scientists find methane in Mars meteorites

NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

STELLAR CHEMISTRY
Robotic Tunneler May Explore Icy Moons

How to sail through space on sunbeams - solar satellite leads the way

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

STELLAR CHEMISTRY
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

STELLAR CHEMISTRY
Curtiss-Wright Awarded Contract By The European Space Agency

Russia's Vostochny Cosmodrome Receives First Telemetry From ISS

Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

STELLAR CHEMISTRY
Garvey Spacecraft selects Pacific Spaceport Complex

Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

NASA issues RFP for New Class of Launch Services

STELLAR CHEMISTRY
The mass of the Mars-sized exoplanet, Kepler-138b

Astronomers create array of Earth-like planet models

Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

STELLAR CHEMISTRY
Oculus out to let people touch virtual worlds

Framework materials yield to pressure

Buckle up for fast ionic conduction

Students Hope 3D-Printed Rocket Engine Will Break Records




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.