. 24/7 Space News .
STELLAR CHEMISTRY
Fresh strontium, an ingredient in fireworks, produced by neutron star merger
by Brooks Hays
Washington DC (UPI) Oct 24, 2019

Scientists have for the first time identified a freshly forged heavy metal element inside a neutron star merger.

The element, strontium, was found in the spectra emanating from the neutron star merger GW170817. Scientists detailed the discovery in a paper published Wednesday in the journal Nature.

Gravitational wave machines first picked up the signal produced by GW170817 in 2017. Using the European Southern Observatory's Very Large Telescope, scientists traced the signal to its origin and imaged the radiation produced by a pair of merging neutron stars.

The explosion produced by the merger, kilonova AT2017gfo, was the first for which detailed spectra were captured. Within the spectral lines captured by VLT, scientists identified the signature of strontium. Researchers also found evidence that the heavy metal was produced via the r-process, or rapid neutron capture.

Scientists have struggled to spot elements in the atmospheres of nearby exoplanets, but were able to pick out the creation of strontium deep inside a galaxy located 130 million light years away.

"Exoplanets are not very bright, so they rely on the light of the star they orbit to shine through the very small atmosphere of the planet," Darach Watson, researcher at the University of Copenhagen, told UPI. "In this case, the kilonova is a massive expanding fireball of radioactive elements the size of the entire solar system and is 500 million times brighter than the sun."

Hydrogen and helium were produced in abundance by the Big Bang, and elements in the mass range from helium to iron are forged by stellar fusion and supernovas. But until now, scientists had failed observe the phenomena that yield heavier elements.

When researchers first studied the kilonova spectra in 2017, they failed to spot the newly minted strontium. This go around, Watson and his researcher partners used a new analysis strategy.

"We took a different, less theoretical and more phenomenological approach to the data," he said. "We first realized that the spectrum we observed was very similar to a simple thermal spectrum, a blackbody spectrum. When we did that, we could subtract the thermal spectrum and see two major features, which we then had to identify."

Sophisticated analysis confirmed that only strontium produced by the r-process could properly account for the two major features -- the positions and strength of the absorption features in the spectra.

In addition to offering new details on how heavy elements are forged, the latest research also offered fresh insights into the nature of neutron star mergers. Scientists were able to deduce that the kilonova's outer layers are spherical and contain mostly lighter heavy elements. Researchers also confirmed that the merger produced such extreme densities that ghostly particles called neutrinos, at least for a moment, can't escape.

"It's quite exciting that we've seen strontium, because it's among the lightest of the heavy elements -- recall that there are many heavy elements, about 60 -- and that requires a very large amount of neutrinos in the merger to help break down the neutrons that would otherwise have made elements heavier than strontium," Watson said.

Scientists have known theoretically how all of the elements are created for several decades. Now, with the observation of strontium, freshly forged by the r-process, they're a bit closer to nailing down exactly how these theoretical processes play out in the cosmos. But there are still a few elemental sources to track down.

"We are keen to be able to see any new-created lanthanide element, or elements in the platinum group such as iridium, platinum, gold, or even higher mass than this, such as uranium," Watson said. "This is because they lie at increasingly high atomic masses and require different physical conditions, such as a suppression of the neutrinos, and for some atoms, may require exotic ultra-heavy atoms to radioactively decay down to these heavier elements."


Related Links
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
How supergiant stars repeatedly cool and heat up
Brussels, Belgium (SPX) Oct 14, 2019
An international team of professional and amateur astronomers, which includes Alex Lobel, astronomer at the Royal Observatory of Belgium, has determined in detail how the temperature of four yellow hypergiants increases from 4,000 degrees to 8,000 degrees and back again in a few decades. They publish their findings in the professional journal Astronomy and Astrophysics. The researchers analysed the light of four yellow hypergiants that has been observed on Earth over the past 50 to 100 years. Yell ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
How the International Space Station is helping us get to the Moon

Russia customising Soyuz for tourist trips

Roscosmos agrees to reschedule Progress launch following request from NASA

US vows closer cooperation with French space agency

STELLAR CHEMISTRY
NASA attaches first of 4 RS-25 engines to Artemis I rocket stage

Rocket Lab teams with Kongsberg for Electron and Photon ground support

DLR and Swedish Space Corporation combine expertise for engine tests

Indian space agency ISRO's launch vehicles to carry along 14 foreign satellites

STELLAR CHEMISTRY
New selfie shows Curiosity, the Mars chemist

Naming a NASA Mars rover can change your life

Martian landslides not conclusive evidence of ice

Maxar delivers robotic arm for NASA's Mars 2020 Rover

STELLAR CHEMISTRY
China's absence from global space conference due to "visa problem" causes concern

China prepares for space station construction

China's rocket-carrying ships depart for transportation mission

China's KZ-1A rocket launches two satellites

STELLAR CHEMISTRY
SpaceX to launch 42,000 satellites

Launch of the European AGILE 4.0 research project

SpaceX seeking many more satellites for space-based internet grid

OmegA team values partnerships with customer, suppliers

STELLAR CHEMISTRY
What About Space Traffic Management?

NASA taps telecommunications technology to develop more capable, miniaturized spectrometer

It takes a two-atom catalyst to make oxygen from water

Space collisions a growing concern as Earth orbit gets more crowded

STELLAR CHEMISTRY
With NASA telescope on board, search for intelligent aliens 'more credible'

Building blocks of all life gain new understanding

Cascades of gas around young star indicate early stages of planet formation

Breakthrough Listen to collaborate with scientists from NASA's TESS Team

STELLAR CHEMISTRY
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.