. 24/7 Space News .
STELLAR CHEMISTRY
Flash of invisible light helps astronomers map the cosmic web
by Staff Writers
Perth, Australia (SPX) Nov 21, 2016


The yellow circle shows the typical location of an FRB. There are thousands of stars and galaxies in this direction. Because the burst was very bright we were able to locate it to a small region near the edge of that circle, shown as the pink banana-shaped region in the inset. In this region there are only 6 detected galaxies. The position of the most likely host galaxy, VHS7, is highlighted on the plot. Image courtesy Dr. Vikram Ravi/Caltech and Dr. Ryan Shannon/ICRAR-Curtin/CSIRO. For a larger version of this image please go here.

A brief but brilliant burst of radiation that travelled at least a billion light years through Space to reach an Australian radio telescope last year has given scientists new insight into the fabric of the Universe.

ICRAR-Curtin University's Dr Ryan Shannon, who co-led research into the sighting along with the California Institute of Technology's Dr Vikram Ravi, said the flash, known as a Fast Radio Burst (FRB), was one of the brightest seen since FRBs were first detected in 2001.

The flash was captured by CSIRO's Parkes radio telescope in New South Wales.

Dr Shannon, from the Curtin node of ICRAR (the International Centre for Radio Astronomy Research) and CSIRO, said all FRBs contained crucial information but this FRB, the 18th detected so far, was unique in the amount of information it contained about the cosmic web - the swirling gases and magnetic fields between galaxies.

"FRBs are extremely short but intense pulses of radio waves, each only lasting about a millisecond. Some are discovered by accident and no two bursts look the same," Dr Shannon said.

"This particular FRB is the first detected to date to contain detailed information about the cosmic web - regarded as the fabric of the Universe - but it is also unique because its travel path can be reconstructed to a precise line of sight and back to an area of space about a billion light years away that contains only a small number of possible home galaxies."

Dr Shannon explained that the vast spaces between objects in the Universe contain nearly invisible gas and a plasma of ionised particles that used to be almost impossible to map, until this pulse was detected.

"This FRB, like others detected, is thought to originate from outside of Earth's own Milky Way galaxy, which means their signal has travelled over many hundreds of millions of light years, through a medium that - while invisible to our eyes - can be turbulent and affected by magnetic fields," Dr Shannon said.

"It is amazing how these very few milliseconds of data can tell how weak the magnetic field is along the travelled path and how the medium is as turbulent as predicted."

This particular flash reached CSIRO's Parkes radio telescope mid-last year and was subsequently analysed by a mostly Australian team.

A paper describing the FRB and the team's findings was published in the journal Science.

The Parkes telescope has been a prolific discoverer of FRBs, having detected the vast majority of the known population including the very first, the Lorimer burst, in 2001.

FRBs remain one of the most mysterious processes in the Universe and likely one of the most energetic ones. To catch more FRBs, astronomers use new technology, such as Parkes' multibeam receiver, the Murchison Widefield Array (MWA) in Western Australia, and the upgraded Molonglo Observatory Synthesis Telescope near Canberra.

This particular FRB was found and analysed by a system developed by the supercomputing group led by Professor Matthew Bailes at Swinburne University of Technology.

Professor Bailes, who was a co-author on the Science paper, also heads The Dynamic Universe research theme in the ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), which has seven Australian nodes including ICRAR-Curtin University.

"Ultimately, FRBs that can be traced to their cosmic host galaxies offer a unique way to probe intergalactic space that allow us to count the bulk of the electrons that inhabit our Universe," Professor Bailes said.

"To decode and further understand the information contained in this FRB is an exceptional opportunity to explore the physical forces and the extreme environment out in Space."

"The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst" published November 17th 2016 in Science.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
International Centre for Radio Astronomy Research
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
How Deadly Would A Nearby Gamma Ray Burst Be?
Moffett Field CA (SPX) Oct 19, 2016
Despite the obvious doom and gloom associated with mass extinctions, they have a tendency to capture our imagination. After all, the sudden demise of the dinosaurs, presumably due to an asteroid strike, is quite an enthralling story. But not all mass extinctions are quite as dramatic and not all have an easily identified culprit. The Ordovician extinction - one of the "big five" in Earth's ... read more


STELLAR CHEMISTRY
New crews announced for Space Station

ESA astronaut Thomas Pesquet arrives at the International Space Station

Proxima mission begins

Supermoon brightens night sky: A lesson in orbital mechanics

STELLAR CHEMISTRY
Predictive modeling for NASA's Entry, Descent, and Landing Missions

SLS propulsion system goes into Marshall stand ahead of big test series

Vega ready for GOKTURK-1A to be encapsulated

Star One D1 arrives for heavy-lift Ariane 5 in Dec with 2 SSL-built satellites

STELLAR CHEMISTRY
NASA field test focuses on science of lava terrains, like Early Mars

ESA's new Mars orbiter prepares for first science

Can we grow potatoes on Mars

Dutch firm unveils concept space suit for Mars explorers

STELLAR CHEMISTRY
Chinese astronauts return to earth after longest mission

Material and plant samples retrieved from space experiments

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

STELLAR CHEMISTRY
Intelsat and Intelsat General support hurricane Matthew recovery efforts

Charyk helped chart the course of satellite communications

Boeing to consolidate defense and space sites

Can India beat China at its game with common satellite for South Asia

STELLAR CHEMISTRY
UK 'space junk' project highlights threat to missions

Dry adhesive holds in extreme cold, strengthens in extreme heat

NASA microthrusters achieve success on ESA's LISA Pathfinder

Malawi could help secure raw materials for green technologies

STELLAR CHEMISTRY
Scientists from the IAC discover a nearby 'superearth'

Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

STELLAR CHEMISTRY
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.