. 24/7 Space News .
CHIP TECH
First proof of quantum computer advantage
by Staff Writers
Munich, Germany (SPX) Oct 19, 2018

file illustration only

For many years, quantum computers were not much more than an idea.

Today, companies, governments and intelligence agencies are investing in the development of quantum technology. Robert Konig, professor for the theory of complex quantum systems at the TUM, in collaboration with David Gosset from the Institute for Quantum Computing at the University of Waterloo and Sergey Bravyi from IBM, has now placed a cornerstone in this promising field.

Conventional computers obey the laws of classical physics. They rely on the binary numbers 0 and 1. These numbers are stored and used for mathematical operations. In conventional memory units, each bit - the smallest unit of information - is represented by a microscopic dot on a microchip. Each of these dots can hold a charge that determines whether the bit is set to 1 or 0.

In a quantum computer, however, a bit can be both 0 and 1 at the same time. This is because the laws of quantum physics allow electrons to be in multiple places at one time. Quantum bits, or qubits, thus exist in multiple overlapping states.

This so-called superposition allows quantum computers to perform operations on many values in one fell swoop whereas a single conventional computer typically must execute these operations sequentially. The promise of quantum computing lies in the ability to solve certain problems significantly faster.

From conjecture to proof
Konig and his colleagues have now conclusively demonstrated the advantage of quantum computers. To this end, they developed a quantum circuit that can solve a specific "difficult" algebraic problem.

The new circuit has a simple structure: it only performs a fixed number of operations on each qubit. Such a circuit is referred to as having a constant depth. In their work, the researchers prove that the problem at hand cannot be solved using classical constant-depth circuits.

They furthermore answer the question of why the quantum algorithm beats any comparable classical circuit: The quantum algorithm exploits the non-locality of quantum physics.

Prior to this work, the advantage of quantum computers had neither been proven nor experimentally demonstrated - notwithstanding that evidence pointed in this direction. One example is Shor's quantum algorithm, which efficiently solves the problem of prime factorization.

However, it is merely a complexity-theoretic conjecture that this problem cannot be efficiently solved without quantum computers. It is also conceivable that the right approach has simply not yet been found for classical computers.

A step on the road to quantum computing
Robert Konig considers the new results primarily as a contribution to complexity theory. "Our result shows that quantum information processing really does provide benefits - without having to rely on unproven complexity-theoretic conjectures," he says.

Beyond this, the work provides new milestones on the road to quantum computers. Because of its simple structure, the new quantum circuit is a candidate for a near-term experimental realization of quantum algorithms.

Research paper


Related Links
Technical University of Munich (TUM)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Inorganic metal halide perovskite-based photodetectors for optical communication applications
Linkoping, Sweden (SPX) Oct 18, 2018
Researchers at the universities in Linkoping and Shenzhen have shown how an inorganic perovskite can be made into a cheap and efficient photodetector that transfers both text and music. "It's a promising material for future rapid optical communication", says Feng Gao, researcher at Linkoping University. "Perovskites of inorganic materials have a huge potential to influence the development of optical communication. These materials have rapid response times, are simple to manufacture, and are extrem ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Plant hormone makes space farming a possibility

Installing life support the hands-free way

Smell and stress sensors a smash at Tokyo tech fair

Escape capsule with Soyuz MS-10 crew hit ground 5 times before stopping

CHIP TECH
US astronaut Hague 'amazed' by Russian rescue team's work after Soyuz failure

Russian investigators identify responsible for failed Soyuz launch

Russian Space Corp gets telemetry data, video to probe Soyuz failure

Roscosmos plans to restart Soyuz launches from late November

CHIP TECH
The claw game on Mars: NASA InSight plays to win

Scientists to debate landing site for next Mars rover

Efforts to communicate with Opportunity continue

Painting cars for Mars

CHIP TECH
China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

CHIP TECH
How Max Polyakov from Zaporozhie develops the Ukrainian space industry

European Space Talks: we need more space!

Source reveals timing of OneWeb satellites' debut launch on Soyuz

French Space Agency opens new office in the UAE

CHIP TECH
Bursting the clouds for better communication

Lockheed Martin reaches technical milestone for Long Range Discrimination Radar

Extremely small magnetic nanostructures with invisibility cloak imaged

Kleos Space signs MoU with Airbus to collaborate on In-Space manufacturing technology

CHIP TECH
Double dust ring test could spot migrating planets

Life-long space buff and Western graduate student discovers exoplanet

How the seeds of planets take shape

NASA should expand search for life in the universe: NAS Report

CHIP TECH
Icy moon of Jupiter, Ganymede, shows evidence of past strike-slip faulting

Icy warning for space missions to Jupiter's moon

New Horizons sets up for New Year's flyby of Ultima Thule

Hunt for Planet X reveals the Goblin, a faraway dwarf planet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.