Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















ENERGY TECH
First direct observation and measurement of ultra-fast moving vortices in superconductors
by Staff Writers
Jerusalem (SPX) Jul 24, 2017


This photo shows four different images of vortices penetrating into a superconducting lead film at rates of tens of GHz, and traveling at velocities up to about 20 km/s. The vortex trajectories, appearing as smeared lines, show a tree-like structure with a single stem that undergoes a series of bifurcations into branches. Each image is done at a different magnetic field and each image is 12 x 12 um2. Credit (Photo credit: Yonathan Anahory / Hebrew University)

Researchers have made the first direct visual observation and measurement of ultra-fast vortex dynamics in superconductors. Their technique, detailed in the journal Nature Communications, could contribute to the development of novel practical applications by optimizing superconductor properties for use in electronics.

Superconductivity is a state of matter in which an electric current can flow with absolutely no resistance. This occurs when certain materials are cooled below a critical temperature. The effect is useful for various applications, from magnetically levitating trains to MRI machines and particle accelerators. It also sparks the imagination with thoughts of lossless power transfer and much faster computation.

However, superconductivity is, generally speaking, suppressed in the presence of magnetic fields, limiting the ability to use these materials in real life applications. A certain family of superconductors, called type 2, can withstand much higher values of magnetic fields. This is thanks to their ability to allow the magnetic field to thread through the material in a quantized manner, in a local tubular-shaped form called a vortex. Unfortunately, in the presence of electric currents these vortices experience a force and may begin to move. Motion of vortices allows for electrical resistance, which, again, poses an obstacle for applications.

Understanding when and how vortices will move or remain localized is the focus of much scientific research. Until now, addressing the physics of fast moving vortices experimentally has proven extremely challenging, mainly because of the lack of adequate tools.

Now an international team of researchers, led by Prof. Eli Zeldov from the Weizmann Institute of Science and Dr. Yonathan Anahory, senior lecturer at the Hebrew University of Jerusalem's Racah Institute of Physics, has shown for the first time how these vortices move in superconducting materials and how fast they may travel.

They used a novel microscopy technique called scanning SQUID-on-tip, which allows magnetic imaging at unprecedented high resolution (about 50 nm) and magnetic sensitivity. The technique was developed over the last decade at the Weizmann Institute by a large team including Ph.D. student Lior Embon and Ella Lachman and is currently being implemented at the Hebrew University in Dr. Anahory's lab as well.

Using this microscope, they observed vortices flowing through a thin superconducting film at rates of tens of GHz, and traveling at velocities much faster than previously thought possible - up to about 72 000 km/hr (45 000 mph). This is not only much faster than the speed of sound, but also exceeds the pair-breaking speed limit of superconducting condensate - meaning that a vortex can travel 50 times faster than the speed limit of the supercurrent that drives it. This would be like driving an object to travel around the earth in just over 30 minutes.

In photos and videos shown for the first time, the vortex trajectories appear as smeared lines crossing from one side of the film to another. This is similar to the blurring of images in photographs of fast-moving objects. They show a tree-like structure with a single stem that undergoes a series of bifurcations into branches. This channel flow is quite surprising since vortices normally repel each other and try to spread out as much as possible. Here vortices tend to follow each other, which generates the tree-like structure.

A team of theoretical physicists from the USA and Belgium, led by Professors Alexander Gurevich and Milorad Milosevi?, partially explained this finding by the fact that when a vortex moves, the appearance of resistance locally heats the material, which makes it easier for following vortices to travel the same route.

"This work offers an insight into the fundamental physics of vortex dynamics in superconductors, crucial for many applications," said Dr. Lior Embon, who was, at the time, the student in charge of this study. "These findings can be essential for further development of superconducting electronics, opening new challenges for theories and experiments in the yet unexplored range of very high electromagnetic fields and currents."

"The research shows that the SQUID-on-tip technique can address some outstanding problems of non-equilibrium superconductivity, ultrafast vortices and many other magnetic phenomena at the nanometer scale," said Dr. Yonathan Anahory, senior lecturer at the Hebrew University's Racah Institute of Physics.

Furthermore, simulation results obtained by Ph.D. student ?eljko Jeli? from Belgium suggest that by proper sample design and improved heat removal it should be possible to reach even higher velocities. In that regime, the calculated frequencies of penetration of vortices may be pushed to the much technologically desired THz frequency gap.

The research uncovers the rich physics of ultrafast vortices in superconducting films, and offers a broad outlook for further experimental and theoretical investigations. In the future, this technology could allow researchers to test designs that aim to reduce vortex motion and improve the properties of superconductors.

ENERGY TECH
Optimizing hydrogen-powered passenger ferries focus of Sandia Labs study
Livermore CA (SPX) Jul 18, 2017
Maritime transportation has emerged as one solution to the traffic gridlock that plagues coastal cities. But with urban passenger ferries operating in sensitive environments and tourist areas, hydrogen fuel cell-powered passenger ferries offer a quiet, zero-emission alternative to conventional diesel vessels. In its San Francisco Bay Renewable Energy Electric Vessel with Zero Emissions stu ... read more

Related Links
Hebrew University of Jerusalem
Powering The World in the 21st Century at Energy-Daily.com

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Astronauts gear up for space with tough Russian training

ESA astronaut Paolo Nespoli starts third mission on Space Station

Voyager spacecraft still in communication 40 years out into the void

NextSTEP Partners Develop Ground Prototypes to Expand our Knowledge of Deep Space Habitats

ENERGY TECH
Three Up, Three Down as NASA Tests RS-25 Flight Controller

Iran in 'successful' test of satellite-launch rocket

Aerojet Rocketdyne's RS-25 Flight Controller Goes Three for Three in SLS Test

India looks to more launches with new facility from 2018

ENERGY TECH
Eclipse Balloons to Study Effect of Mars-Like Environment on Life

Portals to new worlds: Martian exploration near the North Pole

Opportunity enters Automode during solar conjunction pause

For Moratorium on Sending Commands to Mars, Blame the Sun

ENERGY TECH
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

ENERGY TECH
Iridium Announces Third Iridium NEXT Launch Date

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

A Final Farewell to LISA Pathfinder

ENERGY TECH
Fundamental breakthrough in the future of designing materials

Multitasking monolayers

A new material emits white light when exposed to electricity

Writing with the electron beam: Now in silver

ENERGY TECH
Breakthrough Starshot launches tiny spacecraft in quest for Alpha Centauri

Has Cassini found a universal driver for prebiotic chemistry at Titan?

An Earth-like atmosphere may not survive Proxima b's orbit

A New Search for Extrasolar Planets from the Arecibo Observatory

ENERGY TECH
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

NASA's New Horizons Team Strikes Gold in Argentina




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement