. 24/7 Space News .
EARLY EARTH
Fires fueled spread of grasslands on ancient Earth
by Staff Writers
University Park PA (SPX) Dec 03, 2018

Outcrops in Pakistan provided paleosol, or fossil soil samples, used to test the role of fire in the spread of grasslands nearly 10 million years ago.

Ancient wildfires played a crucial role in the formation and spread of grasslands like those that now cover large parts of the Earth, according to scientists at Penn State and the Smithsonian National Museum of Natural History.

A new study links a large rise in wildfires nearly 10 million years ago, in the late Miocene, with a major shift in vegetation on land, as indicated by carbon isotopes of plant biomarkers found in the fossil record. Frequent, seasonal fires helped turn forested areas into open landscapes, and drove the expansion of grasslands, the researchers said.

The team developed an innovative approach to test the role of fire in the rise of early grasslands. They analyzed tracers of ancient leaves and of burned organic matter left behind in paleosols, or fossil soils, in northern Pakistan.

"The tools we use are molecules and biomarkers produced by organisms in Earth history and preserved in rocks," said Allison Karp, a graduate student in geosciences at Penn State and lead author on the paper. "We can use these as clues to figure out what was happening with climate and ecology in the past."

The new technique has broad implications as a tool for scientists seeking to answer questions about past vegetation and climate change, the researcher said.

This shows that the tool can pinpoint the location of a fire where it occurred, according to Karp. "In a paleosol record you are really capturing an integrated picture of what was happening when the soil was forming," she said.

The researchers recently reported their findings in the Proceedings of the National Academy of Sciences. Katherine Freeman, Evan Pugh University Professor of Geosciences at Penn State and Karp's adviser, is a co-author on the paper.

"This is one of the biggest ecological changes in the last 66 million years," said Karp. "None of the open grassland systems we have today existed before this transition. It was a very different looking world, especially in sub-tropical places like Pakistan."

Scientists have long studied the rise of C4 grasslands, named after plants that evolved a new way to handle photosynthesis that allows them to thrive in dry, tropical conditions and with lower amounts of carbon dioxide. These plants include modern crops like corn and sugarcane.

A drop in global carbon dioxide levels was once believed to be behind the rise of C4 grasslands. More recent research has shown that the grasses spread at different rates on different continents, indicating that regional factors, like rain patterns - and potentially fire - played important roles. But there had been little direct evidence that linked a rise in wildfires to this transition.

"We were interested in reconstructing fire and the expansion of grasslands in the same geologic record to see if we could find proxy evidence of the role fire played," Karp said. "We now have a nice line of observational evidence to compare to what the models have said."

Karp and her collaborators used polycyclic aromatic hydrocarbons (PAHs), found in paleosols, as fire proxies. PAHs are chemicals that are created by the burning of organic matter like wood and plants. They also are naturally found in coal and crude oil.

PAHs increased five-fold across the study area while evidence of conifer trees declined and ultimately disappeared. The heavily forested landscape opened up in two stages. Around 10 million years ago, forests were replaced by more fire-prone, open woodlands or grasslands, and between six and eight million years ago, C4 grasslands became dominant just as the quantity of fire signatures sharply increased.

Modern fire ecology can explain the process. Grasses grow faster than trees after a fire and they also help create conditions ripe for subsequent fires, promoting open landscapes. In the late Miocene, wet seasons brought on by monsoon conditions encouraged plant growth, which in turn created more fuel for fires during hot, dry seasons in Pakistan.

"The role fire played in the expansion and evolution of grassland systems in deep time is important because understanding how fire has maintained systems in the past can help us predict what may happen to these important systems in the future as climate continues to change," Karp said.

The new fire marker approach could be used to examine landscape-scale interactions between fire and vegetation for other geographic regions and climactic transitions, like glacial-interglacial transitions or catastrophic climate-change events, researchers said.

Research paper


Related Links
Penn State
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
World's smallest dinosaur tracks reveal new sparrow-sized raptor
Washington DC (UPI) Nov 16, 2018
Scientist's have traced a trail of tiny dinosaur footprints to a diminutive raptor. Researchers found the tracks of the sparrow-sized dinosaur inside a dried lakebed in South Korea. "They are the world's smallest dinosaur tracks," Anthony Romilio, researcher at the University of Queensland, said in a news release. The 110-million-year-old tracks date to the Cretaceous period, a time when dinosaurs shared the planet with mammals and birds. Researchers described their discovery this ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Russia space agency targeted over "stolen" billions

NASA probes 'drug-free' policies, safety at SpaceX, Boeing

Robotic arm links cargo craft to International Space Station

UK Space Agency funds new experiments onboard the International Space Station

EARLY EARTH
Focus on Vega developments

RUAG Space signs MOA with Australian rocket company Gilmour Space

SpaceX's Elon Musk renames his big rocket "Starship"

A job and a half for first Eurostar Neo mission

EARLY EARTH
Shaping the surface of Mars with water, wind and ice

Anxiety at NASA as InSight spacecraft nears Red Planet

Aerojet Rocketdyne Propulsion Delivers Mars InSight to Planet's Surface

Lockheed Martin and NASA JPL Successfully Land on Mars

EARLY EARTH
Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

EARLY EARTH
Kleos Space signs channel partner agreement with IMSL

Airbus to build new generation broadcast satellites to renew Eutelsat HOTBIRD fleet

Goonhilly partners with Airbus, other industry leaders and academics in proposed SmartSat CRC to drive Australia's space sector

Space technology company to set up high-volume production of ultra-powerful LEO satellite platforms

EARLY EARTH
New technique to make objects invisible proposed

Disordered materials could be hardest, most heat-tolerant carbides

How to melt gold at room temperature

NRL demonstrates new non-mechanical laser steering technology

EARLY EARTH
Oxygen could have been available to life as early as 3.5 billion years ago

Quantum artificial life created on the cloud

Jumping genes shed light on how advanced life may have emerged

Researchers Are Perfecting Technology to Look for Signs of Alien Life

EARLY EARTH
Encouraging prospects for moon hunters

Evidence for ancient glaciation on Pluto

SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.