. 24/7 Space News .
NANO TECH
Finally a promising natural nanomaterial
by Staff Writers
Kazan, Russia (SPX) Oct 28, 2015


a) This image shows loading clay nanotubes with drug from saturation solution. b,c) Mixing with drug solution, pumping out air, and pulling in drug molecules, washing, and loaded tubes. For a larger version of this image please go here.

Yuri Lvov and Rawil Fakhrullin of Bionanotechnology Lab, Kazan Federal University, in cooperation with Wencai Wang and Liqun Zhang of State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology have recently presented in Advanced Materials a broad scope of application of halloysite clay tubes .

Halloysite is a natural biocompatible nanomaterial available in thousands of tons at low price, which makes it a good candidate for nanoarchitectural composites. In chemical composition they are similar to kaolin and can be considered as rolled kaolin sheets with inner diameter of 10-20 nm, outer diameter of 40-70 nm and a length of 500-1500 nm. The internal side of halloysite is composed of Al2O3 while the external is mainly SiO2.

The inner lumen of halloysite may be adjusted by etching to 20-30% of the tube volume and used as natural nanocontainer for loading and sustained release of chemical agents. These ceramic nanotubes form a "skeleton" in the bulk polymers, enhancing the composite strength and adhesivity. These "skeleton bones" may be loaded with active compounds, like real bones are loaded with marrow, providing additional functionality for polymers (antimicrobial, anti-aging, anticorrosion, and flame-retardancy).

Halloysite tubes can encase enzymes for longer storage, higher temperature, and extended functionality, while the tube's opening allows for delivery of small substrate molecules into the tube interior for biocatalysis. Loading DNA into halloysite is another prospective research direction. As functional nanoblocks, halloysite tubes may be used for building on biological cells, like the formation of spore-like microbial shells providing microorganisms with additional functions.

In vitro and in vivo studies on biological cells and worms indicate the safety of halloysite, and furthermore, it can store and release molecules in a controllable manner, making these tiny containers attractive for applications in drug delivery, antimicrobial materials, self-healing polymeric composites, and regenerative medicine.

The material, however, is not biodegradable, as there are no biological mechanisms to degrade this alumosilicate clay in the body, and it cannot be injected in the blood intravenously, but rather may be used for external medical treatment with slow release of encapsulated drugs (e.g., in creams, implants, or wound treatment of tissues).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Kazan Federal University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Anti-clumping strategy for nanoparticles
New York NY (SPX) Oct 20, 2015
Nanoparticles are ubiquitous in industrial applications ranging from drug delivery and biomedical diagnostics to developing hydrophobic surfaces, lubricant additives and enhanced oil recovery solutions in petroleum fields. For such nanoparticles to be effective, they need to remain well dispersed into the fluid surrounding them. In a study published in EPJ B, Brazilian physicists identified the ... read more


NANO TECH
All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Study reveals origin of organic matter in Apollo lunar samples

Russia touts plan to land a man on the Moon by 2029

NANO TECH
Signs of Acid Fog Found on Mars

NASA Chief: We're Closer to Sending Humans on Mars Than Ever Before

Rewrite of Onboard Memory Planned for NASA Mars Orbiter

Martian skywatchers provide insight on atmosphere, protect orbiting hardware

NANO TECH
Faster optimization

Sally Ride Science Launches at UC San Diego

Charles Elachi to retire as JPL Director

From science fiction to reality - sonic tractor beam invented

NANO TECH
Declaration approved to promote Asia Pacific space cooperation

China's first moon rover sets record for longest stay

China to set up civil satellite systems by 2020

The Last Tiangong

NANO TECH
Space station marks 15 years inhabited by astronauts

Space Station Investigation Goes With the Flow

NASA astronauts get workout in marathon spacewalk

Between the Ears: International Space Station Examines the Human Brain

NANO TECH
Russia signs contract with Eutelsat to launch satellites through 2023

ULA launches GPS IIF-11 satellite for US Air Force

International Launch Services Announces Multi-Launch Agreement With Eutelsat

GSAT-15 begins the payload integration process for Arianespace's next Ariane 5 mission

NANO TECH
Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

Scientists simulate 3-D exotic clouds on an exoplanet

Spirals in dust around young stars may betray presence of massive planets

NANO TECH
Holograms go mainstream, with future full of possibility

New HP Enterprise sees cloud ties with Amazon, others

U.S. Air Force awards Southwest Research Institute development contract

New System Giving SMAP Scientists the Speed They Need









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.