Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
Fierce 'Superflares' from the Sun Zapped an Infant Earth
by Adam Hadhazy for Astrobiology Magazine
Moffett Field CA (SPX) Mar 22, 2015


The young Sun inundated the early Earth with "superflares" of particles and radiation. Image courtesy NASA/Vladimir Airapetian.

Our young sun may have routinely blasted Earth with gobs of energy more powerful than any similar bombardments recorded in human history.

Huge bursts of these particle and radiation "showers" ignited by these so-called "superflares" could have penetrated Earth's protective magnetic fields and bathed our planet's atmosphere, a new study has shown. Superflares, therefore, likely had profound impacts on the development of life on our planet.

The findings stem from a growing set of observations of other stars like the Sun. NASA's Kepler spacecraft spotted the brightening characteristic of flares in Sun-like stars it monitored for over four years. Although flares commonly erupt from the Sun and it appears other stars as well, frequency does not render these stellar explosions any less impressive.

"Solar flares represent the most violent eruptions in the Solar System," said Vladimir Airapetian, senior astrophysicist at NASA's Goddard Space Flight Center and a research professor at George Mason and Capella Universities. "They release energy comparable to a couple billion megatons of TNT in a few minutes."

Airapetian was the lead author of a new paper on the findings appearing in the Proceedings of 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun Proceedings of Lowell Observatory.

The Kepler data, along with observations of two Sun-like stars by Japanese astronomers, have revealed that the Sun's documented spasms might be rather mild and rare in modern times, fortunately for us.

The 'Big One'
The biggest flare event in recent history was the so-called Carrington event in 1859, named after the British astronomer Richard Carrington. He documented a brightening of the Sun near a group of sunspots-often the site of flares-that preceded an incredible aurorae display. Astonished sky gazers reported the colorful Northern Lights as far south as the Caribbean.

Aurorae are caused by particles of air getting charged up by energy from the flaring Sun as it floods into the atmosphere at Earth's poles. In the Carrington event, this overflow of energy also induced electric currents in telegraph wires, causing sparks, and even setting equipment on fire, according to reports from the time.

Based on the Carrington event and smaller, more recent Sun-spawned disruptions, many scientists and policymakers worry about a devastatingly powerful flare crippling our technology-dependent, modern society.

Airapetian's study affirmed these concerns as justified. Observations of 279 Sun-like stars detected signs of brightening comparative in size to the Carrington event, but also superflares on the order of 10,000 times stronger than any flares known to have been unleashed by the Sun.

"This discovery is hard to overestimate," said Airapetian, "because it may uncover the 'hidden powers' of our Sun in the past, near or far future."

Unruly youth
Other research has found that young, Sun-like stars, much like young human children, are particularly prone to throwing tantrums. Early in their lives, stars rotate faster and are more magnetically active - conditions ripe for flare eruptions.

Flares arise when magnetic field lines emanating from the Sun, which normally form "rubber band-like" loops, snap and reconnect, experiencing a sort of "short circuit," as Airapetian calls it. A burst of lethal doses of solar radiation as well as the Sun's constituent charged gas, or plasma, often spews out into space. When the latter is involved, the flare is said to have hurled a coronal mass ejection, or CME.

Very active stars yield stronger and more frequent flares and CMEs. Airapetian said that according to his research team's calculations, the young Sun in its first several hundred million years of life could have cranked out an astounding 250 superflares per day.

Of course, then as now, most superflares and associated CMEs would have missed Earth, a relatively small target in the Solar System. Still, statistically speaking, it looks likely that early Earth took the brunt of a solar blast more powerful than the Carrington event at the shocking rate of at least once a day - and for half an eon.

An energetic rain
To get a sense of the effects on early Earth from this sort of, as Airapetian put it, "fast and furious" superflare and super-CME bombardment, he and his team built computer models. The models simulated a relatively conservative super-CME, only about twice that of the Carrington event's potency, and had it smash into a model of the Earth's magnetosphere and upper atmosphere.

For simplicity's sake, Airapetian assumed that Earth had developed a magnetic field of similar intensity as today's about 500 million years after its birth, shortly following the Sun's genesis 4.6 billion years ago. The presence of this field would probably have overlapped for a time with the Sun's youthful superflare activity. Life, perhaps not incidentally, is thought to have emerged about 3.8 billion years ago, after the magnetic field's formation.

According to the new study, early Earth's magnetic field would have buckled under the raging Sun's onslaught.

"In our paper, we have shown that a super Carrington-type CME event would have greatly compressed the magnetic field," said Airapetian. "This would ignite huge electric currents on Earth and let energetic particles penetrate the Earth's atmosphere and surface."

Giver, or taker, of life?
What exactly this radiation would have done to hinder or perhaps, counterintuitively, help life's rise, is debatable. The timing of a modicum of protection against the superflaring young Sun, thanks to a magnetic field, suggests the complexity of life's self-replicating chemistry could not have withstood the young Sun's energetic interference.

However, continuing research by Airapetian suggests superflares and CMEs from the Sun might have been integral to life's rise. Such energetic radiation could have broken apart nitrogen molecules with very tightly bound atoms in the early Earth's atmosphere into free, individual nitrogen atoms. From the perspective of chemistry, nitrogen atoms bond well with other atoms.

Thus set free by superflares, the nitrogen atoms could have then combined with hydrogen and carbon, creating "organic molecules that can set favorable conditions for creating the building blocks of life," said Airapetian. Furthermore, the nitrogen atoms could have combined with hydrogen forming ammonia in the atmosphere, a greenhouse gas that might have played an important role in warming the early Earth.

It's been a long-standing mystery how inert, molecular nitrogen in early Earth's atmosphere ever broke down into atomic nitrogen. Life performs this task all the time, but it begs the chicken-or-the-egg scenario of how life ever formed without available nitrogen, and how nitrogen was ever available without life. Superflares might provide the answer.

"On one hand, our studies suggest that the harsh conditions introduced by intensive radiation from flare and CME activity had a detrimental effect on life," he said. "On the other hand, high levels of steady, intense radiation could have opened a 'window of opportunity' for the origin of life on Earth by setting a stage for prebiotic chemistry it requires."

Airapetian and colleagues have continued digging into these implications and promise new results soon.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Astrobiology Magazine
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
Iron rain fell on early Earth, new Z machine data supports
Albuquerque NM (SPX) Mar 19, 2015
Researchers at Sandia National Laboratories' Z machine have helped untangle a long-standing mystery of astrophysics: why iron is found spattered throughout Earth's mantle, the roughly 2,000-mile thick region between Earth's core and its crust. At first blush, it seemed more reasonable that iron arriving from collisions between Earth and planetesimals - ranging from several meters to hundre ... read more


EARLY EARTH
Moon crater named for aviator Amelia Earhart

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

EARLY EARTH
Could Water Have Carved Channels On Mars Half A Million Years Ago?

MARSDROP Microprobes Could Expand Spacecraft Mission Capabilities

NASA Spacecraft Detects Aurora and Mysterious Dust Cloud around Mars

Irish Mars trip finalist casts doubt on project

EARLY EARTH
The Science Of The Start-Up

From cancer-battling bacteria to life on Mars at TED

TED Prize winner wishes for archive of human wisdom

Expandable addition on ISS will gather data for future space habitats

EARLY EARTH
China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

Tianzhou-1 cargo ship to dock with space lab in 2016

EARLY EARTH
Russia, US May Sign New Deal to Send Astronauts to ISS

Lockheed Martin reveals new method for resupplying space station

Testing astronauts' lungs in Space Station airlock

Astronauts return to Earth on Russian Soyuz spaceship

EARLY EARTH
Payload integration is underway for Soyuz' Galileo passengers

Kosmotras Denies Reports of Suspending Russian-Ukrainian Launches

Proton launches Express AM-7 satellite for Russian Government

Soyuz Installed at Baikonur, Expected to Launch Wednesday

EARLY EARTH
Some habitable exoplanets could experience wildly unpredictable climates

Scientists: Nearby Earth-like planet isn't just 'noise'

'Habitable' planet GJ 581d previously dismissed as noise probably does exist

Exorings on the Horizon

EARLY EARTH
Design your world - online robots, 3D printers at CeBIT

NASA Running Out of Nuclear Fuel For Batteries

Liquid metal 'Terminator' robot inspires 3D printer

Fluid-filled pores separate materials with fine precision




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.