. 24/7 Space News .
CHIP TECH
Ferroelectric materials react unexpectedly to strain
by Staff Writers
Chicago IL (SPX) Jun 15, 2016


File image.

Up until recently, researchers thought they had the behaviors of ferroelectric materials mostly figured out.

"The conventional wisdom is that you can put almost any material under mechanical stress, and provided the stress is coherently maintained, the material will become ferroelectric or exhibit an electrical polarization," said James Rondinelli, assistant professor of materials science and engineering at Northwestern University's McCormick School of Engineering. "If you apply similar stresses to a compound that's already ferroelectric, then its polarization increases."

Rondinelli and his team, however, have made a theoretical discovery that flips this widely accepted fact on its head. They found that when a unique class of ferroelectric oxides are stretched or compressed, the polarization does not simply increase as expected. Instead, it goes away completely.

"Based on everything we have known for the past two decades," Rondinelli said, "this is completely unexpected."

Supported by the National Science Foundation, the research is described in the June 13 issue of Nature Materials. Xue-Zeng Lu, a PhD student in Rondinelli's laboratory, served as the paper's first author.

Ferroelectrics are found everywhere: in smart phones, watches, and computers. Because they are so technologically useful, researchers have long been interested in creating new or improved ferroelectric materials - especially in two-dimensional geometries as thin films where they are readily integrated into electronic devices. Ferroelectricity is a property that occurs when a material exhibits a spontaneous electric polarization, which arises from is a shift of positive and negative charges in opposite directions.

When strain is applied to the class of oxides called layered perovskites grown as a thin film, they initially react the same way as other ferroelectrics. Their polarization increases. But if further strain is applied, the polarization completely turns off.

Layered perovskites have recently seen a resurgence of attention because they host functional physical properties like high-temperature super conductivity and support electrochemical or photocatalytic energy conversion processes. Their structures are also much more defect tolerant. Rondinelli's discovery adds a new level of interest to these popular materials.

"You can't strain the material too much because it might lose its functionality," Rondinelli said. "But if you operate near where the polarization turns on and off, you really have a switch. If you're monitoring the polarization for a logic device or memory element, you can apply a small electric field to traverse this boundary and simultaneously read and write the on-and-off state."

Rondinelli's team made this discovery using a theoretical materials tools and quantum mechanical simulations and is now working with experimental collaborators to validate the finding in the laboratory. Another next step is to better understand how this new functionality could help or hinder ferroelectric applications.

In the meantime, Rondinelli said researchers will now need to be careful when applying mechanical stress to layered perovskite ferroelectrics. Applying too much strain could have unintended consequences.

"This finding motivates us to recalibrate our intuition regarding what interactions are expected between mechanical forces and dielectric properties," Rondinelli said. "It requires us to think more carefully, and I suspect there is much more to learn."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Northwestern University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Analogue quantum computation digitized using superconducting circuits
Leioa, Spain (SPX) Jun 14, 2016
The QUTIS group, led by the Ikerbasque professor Enrique Solano, is a world leader in theoretical proposals for quantum simulation and quantum computation with superconducting circuits and other quantum technologies, which are carried out and verified at major international scientific and technological labs. The American company Google has one of the most advanced labs in this field and is a wor ... read more


CHIP TECH
US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

A new, water-logged history of the Moon

CHIP TECH
Musk explains his 'cargo route' to Mars

Remarkably diverse flora in Utah, USA, trains scientists for future missions on Mars

NASA Mars Orbiters Reveal Seasonal Dust Storm Pattern

Study of Opportunity Wheel Scuff Continues

CHIP TECH
TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

Second Starliner Begins Assembly in Florida Factory

CHIP TECH
Experts Fear Chinese Space Station Could Crash Into Earth

Bolivia to pay back loan to China for Tupac Katari satellite

China plans 5 new space science satellites

NASA Chief: Congress Should Revise US-China Space Cooperation Law

CHIP TECH
Cygnus space capsule departs International Space Station

Russian, US Astronauts to Return From ISS on June 18

Astronauts enter inflatable room at space station

First steps into BEAM will expand the frontiers of habitats for space

CHIP TECH
MUOS-5 satellite encapsulated for launch

Airbus Safran Launchers confirms the maturity of the Ariane 6 launcher

Russian Proton-M Rocket Puts US Intelsat DLA-2 Satellite Into Orbit

US Senate reaches compromise on Russian rocket engines

CHIP TECH
New planet is largest discovered that orbits 2 suns

Cloudy Days on Exoplanets May Hide Atmospheric Water

Likely new planet may be in slow death spiral

On exoplanets, atmospheric water may be hiding behind clouds

CHIP TECH
Fighting virtual reality sickness

Cereal science: How scientists inverted the Cheerios effect

Can computers do magic?

New maths accurately captures liquids and surfaces moving in synergy









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.