. 24/7 Space News .
STELLAR CHEMISTRY
Feeding the supermassive black hole at the center of the Milky Way
by Staff Writers
Plainsboro NJ (SPX) Dec 26, 2016


Image and inset of region surrounding Sagittarius A*. (Image: NASA/UMass/D.Wang et al. Inset: NASA/STScI.)

Scientists at Princeton University and the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have developed a rigorous new method for modeling the accretion disk that feeds the supermassive black hole at the center of our Milky Way galaxy. The paper, published online in December in the journal Physical Review Letters, provides a much-needed foundation for simulation of the extraordinary processes involved.

Accretion disks are clouds of plasma that orbit and gradually swirl into massive bodies such as black holes - intense gravitational fields produced by stars that collapse to a tiny fraction of their original size. These collapsed stars are bounded by an "event horizon," from which not even light can escape. As accretion disks flow toward event horizons, they power some of the brightest and most energetic sources of electromagnetic radiation in the universe.

Four million times the mass of the sun
The colossal black hole at the center of the Milky Way - called "Sagittarius A*" because it is found in the constellation Sagittarius - has a gravitational mass that is four million times greater than our own sun. Yet the accretion disk plasma that spirals into this mass is "radiatively inefficient," meaning that it emits much less radiation than one would expect.

"So the question is, why is this disk so quiescent?" asks Matthew Kunz, lead author of the paper, assistant professor of astrophysical sciences at Princeton University and a physicist at PPPL. Co-authors include James Stone, Princeton professor of astrophysical sciences, and Eliot Quataert, director of theoretical astrophysics at the University of California, Berkeley.

To develop a method for finding the answer, the researchers considered the nature of the superhot Sagittarius A* accretion disk. Its plasma is so hot and dilute that it is collisionless, meaning that the trajectories of protons and electrons inside the plasma rarely intersect.

This lack of collisionality distinguishes the Sagittarius A* accretion disk from brighter and more radiative disks that orbit other black holes. The brighter disks are collisional and can be modeled by formulas dating from the 1990s, which treat the plasma as an electrically conducting fluid. But "such models are inappropriate for accretion onto our supermassive black hole," Kunz said, since they cannot describe the process that causes the collisionless Sagittarius A* disk to grow unstable and spiral down.

Tracing collisionless particles
To model the process for the Sagittarius A* disk, the paper replaces the formulas that treat the motion of collisional plasmas as a macroscopic fluid. Instead, the authors use a method that physicists call "kinetic" to systematically trace the paths of individual collisionless particles. This complex approach, conducted using the Pegasus computer code developed at Princeton by Kunz, Stone and Xuening Bai, now a lecturer at Harvard University, produced a set of equations better able to model behavior of the disk that orbits the supermassive black hole.

This kinetic approach could help astrophysicists understand what causes the accretion disk region around the Sagittarius A* hole to radiate so little light. Results could also improve understanding of other key issues, such as how magnetized plasmas behave in extreme environments and how magnetic fields can be amplified.

The goal of the new method, said Kunz, "will be to produce more predictive models of the emission from black-hole accretion at the galactic center for comparison with astrophysical observations." Such observations come from instruments such as the Chandra X-ray observatory, an Earth-orbiting satellite that NASA launched in 1999, and the upcoming Event Horizon Telescope, an array of nine Earth-based radio telescopes located in countries around the world.

Research Report


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton Plasma Physics Laboratory
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Festive nebulae light up Milky Way Galaxy satellite
Munich, Germany (SPX) Dec 22, 2016
The sheer observing power of the NASA/ESA Hubble Space Telescope is rarely better illustrated than in an image such as this. This glowing pink nebula, named NGC 248, is located in the Small Magellanic Cloud, just under 200 000 light-years away and yet can still be seen in great detail. Our home galaxy, the Milky Way, is part of a collection of galaxies known as the Local Group. Along with ... read more


STELLAR CHEMISTRY
India achieves advances multiple space systems in 2016

'Passengers' and the real-life science of deep space travel

NASA Readies for Major Orion Milestones in 2017

Spacewalk for Thomas Pesquet at ISS

STELLAR CHEMISTRY
United Launch Alliance launches EchoStar XIX satellite

Preparing to Plug Into NASA SLS Fuel Tank

Ultra-Cold Storage - Liquid Hydrogen may be Fuel of the Future

NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

STELLAR CHEMISTRY
Small Troughs Growing on Mars May Become 'Spiders'

All eyes on Trump over Mars

Opportunity performs several drives to ancient gully

Full go-ahead for building ExoMars 2020

STELLAR CHEMISTRY
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

STELLAR CHEMISTRY
OneWeb announces key funding form SoftBank Group and other investors

Space as a Driver for Socio-Economic Sustainable Development

Intel acquires ESA incubator company

SoftBank delivers first $1 bn of Trump pledge, to space firm

STELLAR CHEMISTRY
Meet a 'Spacecraft Dressmaker'

Mind-controlled toys: The next generation of Christmas presents?

Purdue analyzes environmental impact of space-based ADS-B

NASA Satellite Servicing Office Becomes a Projects Division

STELLAR CHEMISTRY
Astronomers discover dark past of planet-eating 'Death Star'

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Searching a sea of 'noise' to find exoplanets - using only data as a guide

Are planets like those in 'Star Wars

STELLAR CHEMISTRY
Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation

New Perspective on How Pluto's "Icy Heart" Came to Be









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.