. 24/7 Space News .
TECTONICS
Earth's first example of recycling - its own crust!
by Staff Writers
Washington DC (SPX) Mar 17, 2017


Photograph of the ancient crust such as these found along the eastern shores of the Hudson Bay. Image courtesy Rick Carlson.

Rock samples from northeastern Canada retain chemical signals that help explain what Earth's crust was like more than 4 billion years ago, reveals new work from Carnegie's Richard Carlson and Jonathan O'Neil of the University of Ottawa. Their work is published by Science.

There is much about Earth's ancient crust that scientists don't understand. This is because most of the planet's original crust simply isn't around any longer to be studied directly - it has either sunk back into the planet's interior due to the action of plate tectonics or been transformed by geological activity at Earth's surface to make new, younger rocks.

"Finding remnants of this ancient crust has proven difficult, but a new approach offers the ability to detect the presence of truly ancient crust that has been reworked into 'merely' really old rocks," Carlson said.

The approach employed in this study examined variations in the abundance of an isotope of the element neodymium, which is created by the radioactive decay of a different element, samarium.

Isotopes are versions of an element that have the same number of protons, but different numbers of neutrons, causing each isotope to have a different mass. The isotope of samarium with a mass of 146 is unstable and decays to the isotope of neodymium with a mass of mass 142. (If you're interested in knowing how, it does this by emitting what's called an alpha particle - composed of two neutrons and two protons - from its nucleus.)

Samarium-146 is a radioactive isotope that has a half-life of only 103 million years. That may sound like a long time, but in geological terms it is really quite short. While samarium-146 was present when Earth formed, it became extinct very early in Earth's history. We know of its existence from the study of very ancient rocks, especially meteorites and samples from Mars and the Moon.

Variations in the relative abundance of neodymium-142 compared to other isotopes of neodymium that didn't originate from decaying samarium reflect chemical processes that changed the ratio of samarium to neodymium in the rock while samarium-146 was still present - basically before about 4 billion years ago.

Carlson and O'Neil studied 2.7 billion-year-old granitic rocks that make up a good portion of the eastern shore of Hudson Bay. The abundances of neodymium-142 in these granites indicates that they were derived from the re-melting of much older rocks - rocks that were more than 4.2 billion years old - and that these ancient rocks were compositionally similar to the abundant magnesium-rich rock type known as basalt, which makes up all of the present day oceanic crust as well as large volcanoes such as Hawaii and Iceland.

In more-recent times in Earth's history, basaltic oceanic crust survives at Earth's surface for less than 200 million years before it sinks back into Earth's interior due to the action of plate tectonics.

The results presented in this paper, however, suggest that basaltic crust, which may have formed not long after Earth's formation, survived at Earth's surface for at least 1.5 billion years before later being re-melted into rocks that form a good portion of the northernmost Superior craton, a geological formation that extends roughly from the Hudson Bay in Quebec to Lake Huron in Ontario.

"Whether this result implies that plate tectonics was not at work during the earliest part of Earth history can now be investigated using our tool of studying neodymium-142 variation to track the role of truly ancient crust in building up younger, but still old, sections of Earth's continental crust," Carlson explained.

Their findings thus have important implications about the Earth's earliest crust and the processes that started the formation of Earth's continental crust.

TECTONICS
Overcoming challenges studying the geodynamo
Houghton MI (SPX) Feb 17, 2017
Gleaning data from old rocks may result in bias. Now, geophysicists have a way to improve their methods to overcome challenges in studying the history of the Earth's core and magnetic field that make up the geodynamo. Since researchers cannot visit the core, they use rocks at the surface as a proxy. Specifically, volcanic rocks record the intensity and changes in Earth's magnetic field. Th ... read more

Related Links
Carnegie Institution for Science
Tectonic Science and News

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Trump, NASA and a rare consensus: mission to Mars

Russia to Build First New-Generation 'Federation' Spacecraft by 2021

COBALT Flight Demonstrations Fuse Technologies to Gain Precision Landing Results

NASA Selects New Research Teams to Further Solar System Research

TECTONICS
N.Korea rocket test shows 'meaningful progress': South

SpaceX cargo ship returns to Earth

N. Korea's Kim hails engine test as 'new birth' for rocket industry

Delayed European rocket launch to go ahead after strike

TECTONICS
Mars Volcano, Earth's Dinosaurs Went Extinct About the Same Time

Does Mars Have Rings? Not Right Now, But Maybe One Day

ExoMars: science checkout completed and aerobraking begins

Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

TECTONICS
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

TECTONICS
OneWeb Satellites breaks ground on high-volume satellite manufacturing facility

Globalsat Sky and Space Global sign MoU for testing and offering satellite service in Latin America

Start-Ups at the Final Frontier

Russia probes murder of senior space official in jail

TECTONICS
The strangeness of slow dynamics

How fullerite becomes harder than diamond

Ecosystem For Near-Earth Space Control

Why water splashes: New theory reveals secrets

TECTONICS
Operation of ancient biological clock uncovered

Fossil or inorganic structure? Scientists dig into early life forms

Gigantic Jupiter-type planet reveals insights into how planets evolve

Visualizing debris disk "roller derby" to understand planetary system evolution

TECTONICS
Scientists make the case to restore Pluto's planet status

ESA's Jupiter mission moves off the drawing board

NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.