. 24/7 Space News .
STELLAR CHEMISTRY
Dust particles from afar
by Staff Writers
Bern, Germany (SPX) Oct 20, 2015


The Ulysses mission was a joint project of NASA and ESA. One of the missions's goals was to measure interstellar dust particles that make their way into the solar system. Image courtesy ESA.

When in 1990 the solar probe Ulysses embarked on its 19-year-long exploration tour, the participating researchers turned their attention not only to our Sun, but also to significantly smaller research objects: interstellar dust particles advancing from the depth of space into our solar system. Ulysses was the first mission with the goal to measure these tiny visitors and successfully detected more than 900 of them.

Researchers under the leadership of the Max Planck Institute for Solar System Research (MPS) in Germany and the International Space Science Institute (ISSI) in Switzerland present a comprehensive analysis of this largest data set of interstellar particles in three articles published in the magazine "The Astrophysical Journal". Their conclusion: Within the solar system velocity and flight direction of the dust particles can change more strongly than previously thought.

Perpetually our solar system moves through the Milky Way. For approximately 100 000 years it has been passing through the Local Interstellar Cloud, a cloud of interstellar matter, measuring about 30 light-years in diameter. Microscopic dust particles from this cloud make their way into the interior of our solar system.

For researchers, they are messengers from the depths of space and provide basic information about our more distant cosmic home. In the past, several spacecraft have identified and characterized these "newcomers". These spacecraft include Galileo and Cassini, which traveled to the gas planets Jupiter and Saturn, as well as the mission Stardust, which in 2006 returned captured interstellar dust particles to Earth.

"Nevertheless, the data from Ulysses, that we have now evaluated the first time in their entirety, are unique," explains Harald Kruger from the MPS, Principal Investigator of the Ulysses dust detector. For 16 years the instrument examined the stream of particles from outside our solar system almost without interruption. Compared to this, other missions provided only snapshots.

"In addition, Ulysses' observational position was optimal," says Veerle Sterken from the ISSI, who led the analysis together with Harald Kruger. Ulysses is the only spacecraft so far that has left the orbital plane of the planets and has flown over the Sun's poles. While interplanetary dust produced within our planetary system is concentrated in the orbital plane, interstellar dust can be measured well outside this plane.

"Under the influence of the Sun and the interplanetary magnetic field, the dust particles change their trajectories," explains Peter Strub from MPS. Depending on the mass of the particles, the gravitational pull and the radiation pressure of the Sun as well as the interplanetary magnetic field within the solar system change their flight direction and speed. "Since the Sun and particularly the interplanetary magnetic field are subject to an approximately twelve-year cycle, only long-term measurements can truly unravel this influence", the researcher adds.

From the data of the more than 900 particles, the researchers could extract the most detailed information on mass, size, and flight direction of interstellar dust so far. Computer simulations helped to understand the various contributions of the Sun and the interplanetary field and to separate them.

The study confirms earlier analyzes, according to which the interstellar dust always traverses the solar system in approximately the same direction. It corresponds to the direction in which the solar system and the Local Interstellar Cloud move relatively to each other. "Minor deviations from this main direction depend on the mass of the particles and the influence of the Sun," says Strub.

In 2005, however, a different picture emerged: The far-traveled particles reached the dust detector from a shifted direction. "Our simulations suggest that this effect is likely due to the variations of the solar and interplanetary magnetic field," says Veerle Sterken from ISSI who performed the simulations and led the interpretation of the data. "Altered intial conditions within the Local Interstellar Cloud are likely not the reason."

The researchers also took a close look at the size and properties of the particles. While the majority of the dust particles has a diameter of between a half and 0.05 micrometers, there are also some remarkably large specimens of several micrometers size. "Efforts to characterize the dust outside our solar system with the help of ground-based observations from Earth have not revealed such large sizes", says Kruger.

In return, the very small particles, which astronomers typically find with telescopes, cannot be found in Ulysses measurements. As computer simulations show, compared to their mass these tiny particles become strongly electrically charged within the solar system, are deflected and thus filtered out of the main interstellar dust stream.

The simulations also indicate that the exotic dust has a low density and is therefore porous. "Ulysses' dust detector cannot measure the particles' inner structure directly", says Sterken. "However, on the computer we can try out different densities. With porous particles the observational data can be reconstructed best", the Belgian scientist adds.

The composition of the interstellar particles cannot be determined with the dust instrument onboard Ulysses. However, this is possible with the successor instrument on the Cassini spacecraft developed at the Max Planck Institute for Nuclear Physics in Heidelberg. Its measurements will allow for completely new insights into the origin and evolution of interstellar particles.

Measurements with dust detectors thus provide a look into the Local Interstellar Cloud, which can only be studied by observations from Earth otherwise. In the future, dust researchers want to propose space missions to the European Space Agency to investigate interstellar dust.

The Ulysses space mission was a joint project of ESA and NASA. The Ulysses dust detector was built and operated at the Max Planck Institute for Nuclear Physics in Heidelberg, with the participation of the German Center for Aerospace. The German Research Foundation and the International Space Science Institute in Switzerland made the evaluation of the long-term measurements of interstellar dust possible.

H. Kruger et al.: 16 years of Ulysses interstellar dust measurements in the solar system. I. Mass distribution and gas-to-dust mass ratio, The Astrophysical Journal, Vol. 812, article 139, 19. Oktober 2015, doi:10.1088/0004-637X/812/2/139


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Max Planck Institute for Solar System Research
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Radio telescopes could spot stars hidden in the galactic center
Boston MA (SPX) Sep 23, 2015
The center of our Milky Way galaxy is a mysterious place. Not only is it thousands of light-years away, it's also cloaked in so much dust that most stars within are rendered invisible. Harvard researchers are proposing a new way to clear the fog and spot stars hiding there. They suggest looking for radio waves coming from supersonic stars. "There's a lot we don't know about the galactic ce ... read more


STELLAR CHEMISTRY
Mound near lunar south pole formed by unique volcanic process

Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

STELLAR CHEMISTRY
Opportunity parked for solar panels to charge up for winter

Pebbles on Mars likely traveled tens of miles down a riverbed

To save on weight, a detour to the moon is the best route to Mars

Opportunity working at 'Marathon Valley' before winter relocation

STELLAR CHEMISTRY
Russian Cosmonauts Taste 160 Meals Ahead of Space Station Expedition

NASA, Israel ink space cooperation agreement

Magnetic sail tech alternative to rocket-based space travel

NASA Appoints Mark Kirasich To Serve As Orion Program Manager

STELLAR CHEMISTRY
Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

STELLAR CHEMISTRY
Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

NASA extends Boeing contract for International Space Station

STELLAR CHEMISTRY
ILS Proton Launches Turksat 4B

Both passengers for next Ariane 5 mission arrive in French Guiana

Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

STELLAR CHEMISTRY
Airbus DS ready to start testing exoplanet tracker CHEOPS

Hubble Telescope Spots Mysterious Space Objects

Exoplanet Anniversary: From Zero to Thousands in 20 Years

Mysterious ripples found racing through planet-forming disc

STELLAR CHEMISTRY
Hot stuff: Magnetic domain walls

Colombia receives Northrop Grumman AN/TPS-78 radar

Patterning oxide nanopillars at the atomic scale by phase transformation

Methodology could lead to more sustainable manufacturing systems









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.