. 24/7 Space News .
TIME AND SPACE
Direct coupling of the Higgs boson to the top quark observed
by Staff Writers
Zurich, Switzerland (SPX) Jun 11, 2018

CMS detector in a cavern 100 m underground at CERN's Large Hadron Collider.

On 4 July 2012, two of the experiments at the CERN's Large Hadron Collider (LHC), ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact-Muon-Solenoid), reported independently the discovery of the Higgs boson.

The discovery confirmed the existence of the last missing elementary particle of the Standard Model, half a century after the Higgs boson was predicted theoretically. At the same time the discovery marked also the beginning of an experimental programme aimed to determine the properties of the newly discovered particle. Now, the CMS collaboration achieved an important milestone in that programme.

In the Standard Model, the Higgs boson can couple to the particles of matter called fermions, with a coupling strength proportional to the fermion mass. While associated decay processes have been observed, the decay into top quarks, the heaviest known fermions, is kinematically impossible.

Therefore, alternative routes for directly probing the coupling of the Higgs boson to the top quark are needed. One is through the production of a Higgs boson and a top quark-antiquark pair.

This is the production mechanism that has now been observed for the first time, and in doing so, the CMS collaboration accomplished one of the primary objectives of the Higgs physics programme.

New techniques speed up data extraction
The extraction of these events from the LHC data is challenging as there are many mundane type of events that can mimic them. Identifying these events requires measurements from all CMS subdetectors, which makes the reconstruction quite complex.

The team of Prof. Florencia Canelli of the Department of Physics at the University of Zurich developed, in collaboration with the CMS group of the ETH, sophisticated techniques that allowed CMS to increase the sensitivity to these events.

As consequence, this milestone has been passed considerably earlier than expected. "The development of these techniques also open the possibility of increasing the sensitivity in many other areas of research at the LHC", says Canelli, who is also co-leading the physics group that studies top quarks.

Search for physics beyond the Standard Model
The present achievement is a case in point. With the observation of the coupling between the two heaviest elementary particles of the Standard Model, the LHC physics programme to characterize and more fully understand the Higgs boson has taken an important step.

While the strength of the measured coupling is consistent with the Standard Model expectation, the precision of the measurement still leaves room for contributions from new physics. "In the coming years, much more data will be collected and the precision will be improved, in order to see if the Higgs boson reveals the presence of physics beyond the Standard Model", adds Florencia Canelli.

Research paper


Related Links
University of Zurich
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Spooky quantum particle pairs fly like weird curveballs
Atlanta GA (SPX) Jun 05, 2018
Curvy baseball pitches have surprising things in common with quantum particles described in a new physics study, though the latter fly much more weirdly. In fact, ultracold paired particles called fermions must behave even weirder than physicists previously thought, according to theoretical physicists from the Georgia Institute of Technology, who mathematically studied their flight patterns. Already, flying quantum particles were renowned for their weirdness. To understand why, start with si ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Second Space Station mission for Alexander Gerst begins

New Era of Space Exploration is "Internet of Tomorrow"

Crew from Germany, US, Russia board ISS

New crew blasts off for ISS

TIME AND SPACE
Lockheed Martin Wins Potential $928 Million Contract to Develop New Hypersonic Missile for the Air Force

US Senate introduces measure to upgrade defense against hypersonic threats

Watch live: SpaceX to launch SES-12 communications satellite

Commercial satellite launch service market to grow strongly through 2024

TIME AND SPACE
Science Team Continues to Improve Opportunity's Use of the Robotic Arm

Mars rover Opportunity hunkers down during dust storm

New data-mining technique offers most-vivid picture of Martian mineralogy

More building blocks of life found on Mars

TIME AND SPACE
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

TIME AND SPACE
US FCC expands market access for SES O3b MEO constellation

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

Liftoff as Alexander Gerst returns to space

The European Space Agency welcomes European Commission's proposal on space activities

TIME AND SPACE
Airbus-built Aeolus wind sensor satellite ready for shipment

JUICE comes in from extreme temperature test

Firing up a new alloy

Cooling by laser beam

TIME AND SPACE
Researchers discover multiple alkali metals in unique exoplanet

The Clarke exobelt, a method to search for possible extraterrestrial civilizations

Searching for Potential Life-Hosting Planets Beyond Earth

Sorry ET, Got Here First: Russian Scientist Suggests Humans Would Destroy Aliens

TIME AND SPACE
NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby

Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'

Scientists reveal the secrets behind Pluto's dunes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.