Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



IRON AND ICE
Dinosaur-killing asteroid impact cooled Earth's climate more than previously thought
by Staff Writers
Washington DC (SPX) Nov 01, 2017


In the new research, the authors used a computer code that simulates the pressure of the shock waves created by the impact to estimate the amounts of gases released in different impact scenarios. They changed variables such as the angle of the impact and the composition of the vaporized rocks to reduce the uncertainty of their calculations.

The Chicxulub asteroid impact that wiped out the dinosaurs likely released far more climate-altering sulfur gas into the atmosphere than originally thought, according to new research.

A new study makes a more refined estimate of how much sulfur and carbon dioxide gas were ejected into Earth's atmosphere from vaporized rocks immediately after the Chicxulub event. The study's authors estimate more than three times as much sulfur may have entered the air compared to what previous models assumed, implying the ensuing period of cool weather may have been colder than previously thought.

The new study lends support to the hypothesis that the impact played a significant role in the Cretaceous-Paleogene extinction event that eradicated nearly three-quarters of Earth's plant and animal species, according to Joanna Morgan, a geophysicist at Imperial College London in the United Kingdom and co-author of the new study published in Geophysical Research Letters, a journal of the American Geophysical Union.

"Many climate models can't currently capture all of the consequences of the Chicxulub impact due to uncertainty in how much gas was initially released," Morgan said. "We wanted to revisit this significant event and refine our collision model to better capture its immediate effects on the atmosphere."

The new findings could ultimately help scientists better understand how Earth's climate radically changed in the aftermath of the asteroid collision, according to Georg Feulner, a climate scientist at the Potsdam Institute for Climate Impact Research in Potsdam, Germany who was not involved with the new research. The research could help give new insights into how Earth's climate and ecosystem can significantly change due to impact events, he said.

"The key finding of the study is that they get a larger amount of sulfur and a smaller amount of carbon dioxide ejected than in other studies," he said. "These improved estimates have big implications for the climactic consequences of the impact, which could have been even more dramatic than what previous studies have found."

A titanic collision
The Chicxulub impact occurred 66 million years ago when an asteroid approximately 12 kilometers (7 miles) wide slammed into Earth. The collision took place near what is now the Yucatan peninsula in the Gulf of Mexico. The asteroid is often cited as a potential cause of the Cretaceous-Paleogene extinction event, a mass extinction that erased up to 75 percent of all plant and animal species, including the dinosaurs.

The asteroid collision had global consequences because it threw massive amounts of dust, sulfur and carbon dioxide into the atmosphere. The dust and sulfur formed a cloud that reflected sunlight and dramatically reduced Earth's temperature.

Based on earlier estimates of the amount of sulfur and carbon dioxide released by the impact, a recent study published in Geophysical Research Letters showed Earth's average surface air temperature may have dropped by as much as 26 degrees Celsius (47 degrees Fahrenheit) and that sub-freezing temperatures persisted for at least three years after the impact.

In the new research, the authors used a computer code that simulates the pressure of the shock waves created by the impact to estimate the amounts of gases released in different impact scenarios. They changed variables such as the angle of the impact and the composition of the vaporized rocks to reduce the uncertainty of their calculations.

The new results show the impact likely released approximately 325 gigatons of sulfur and 425 gigatons of carbon dioxide into the atmosphere, more than 10 times global human emissions of carbon dioxide in 2014.

In contrast, the previous study in Geophysical Research Letters that modeled Earth's climate after the collision had assumed 100 gigatons of sulfur and 1,400 gigatons of carbon dioxide were ejected as a result of the impact.

Improving the impact model
The new study's methods stand out because they ensured only gases that were ejected upwards with a minimum velocity of 1 kilometer per second (2,200 miles per hour) were included in the calculations.

Gases ejected at slower speeds didn't reach a high enough altitude to stay in the atmosphere and influence the climate, according to Natalia Artemieva, a senior scientist at the Planetary Science Institute in Tucson, Arizona and co-author of the new study.

Older models of the impact didn't have as much computing power and were forced to assume all the ejected gas entered the atmosphere, limiting their accuracy, Artemieva said.

The study authors also based their model on updated estimates of the impact's angle. An older study assumed the asteroid hit the surface at an angle of 90 degrees, but newer research shows the asteroid hit at an angle of approximately 60 degrees. Using this revised angle of impact led to a larger amount of sulfur being ejected into the atmosphere, Morgan said.

The study's authors did not model how much cooler Earth would have been as a result of their revised estimates of how much gas was ejected. Judging from the cooling seen in the previous study, which assumed a smaller amount of sulfur was released by the impact, the release of so much sulfur gas likely played a key role in the extinction event.

The sulfur gas would have blocked out a significant amount of sunlight, likely leading to years of extremely cold weather potentially colder than the previous study found. The lack of sunlight and changes in ocean circulation would have devastated Earth's plant life and marine biosphere, according to Feulner.

The release of carbon dioxide likely led to some long-term climate warming, but its influence was minor compared to the cooling effect of the sulfur cloud, Feulner said.

Along with gaining a better understand of the Chicxulub impact, researchers can also use the new study's methods to estimate the amount of gas released during other large impacts in Earth's history.

For example, the authors calculated the Ries crater located in Bavaria, Germany was formed by an impact that ejected 1.3 gigatons of carbon dioxide into the atmosphere. This amount of gas likely had little effect on Earth's climate, but the idea could be applied to help understand the climactic effects of larger impacts.

Research paper

IRON AND ICE
Ancient meteorite impact triggered highest surface temperature in Earth's history
Washington (UPI) Sep 20, 2017
Researchers have discovered evidence of an ancient meteorite impact, a collision scientists say is responsible for the highest temperature recorded on Earth's surface - 2,370 degrees Celsius, or 4,298 degrees Fahrenheit. The impact site, Mistastin Lake crater in Labrador Canada, stretches more than 17 miles across. The significant depression was created when a large meteor struck bedro ... read more

Related Links
American Geophysical Union
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Pope asks spacemen life's big questions in ISS live chat

Plants and psychological well-being in space

Spacewalkers fix robotic arm in time to grab next cargo ship

NASA develops and tests new housing for in-orbit science payloads

IRON AND ICE
Thruster for Mars mission breaks records

Draper and Sierra Nevada Corporation announce new agreement for space missions

Aerojet Rocketdyne breaks ground on advanced manufacturing center in Huntsville

New solid rocket motor development facility completed at Spaceport America

IRON AND ICE
Mars Rover Mission Progresses Toward Resumed Drilling

Solar eruptions could electrify Martian moons

MAVEN finds Mars has a twisted tail

Mine craft for Mars

IRON AND ICE
Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

IRON AND ICE
Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

SpaceX launches 10 satellites for Iridium mobile network

IRON AND ICE
Liquids take a shine to terahertz radiation

Voltage-driven liquid metal fractals

Nanoscale textures make glass invisible

Discovery of a new structure family of oxide-ion conductors SrYbInO4

IRON AND ICE
Scientists discover new type of deep-sea hunting called kleptopredation

Comet mission reveals 'missing link' in our understanding of planet formation

Astronomers discover sunscreen snow falling on hot exoplanet

Marine microbes living beneath seabed resort to cannibalism

IRON AND ICE
Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement