. 24/7 Space News .
ICE WORLD
Development of the Patagonian Ice Fields reveals the enormous complexity of physical interactions
by Staff Writers
Webling, Germany (SPX) Dec 11, 2019

Rate of elevation change over the Northern Patagonian Ice Field between 2000 and 2012

The glaciers and ice fields in the South American region of Patagonia have been in retreat since the Little Ice Age between the early 14th century and the mid-19th century. In recent decades, the loss of ice masses associated with tropospheric warming has accelerated. From 2000 to 2016 the Patagonian Ice Fields contributed approximately six percent to the eustatic sea level rise of 0.74 millimetres per year.

This represents the average rise in sea levels due to all of the world's glaciers and ice caps - excluding the ice sheets of Greenland and Antarctica. As clear as this trend is overall, a direct comparison of the developments of the Northern and Southern Patagonian Ice Fields (abbreviated as NPI and SPI) revealed different, even contradictory trends. This demonstrates how complex the interactions between processes on the glacier surface, whicht are directly influenced by climate, and the changes in the flow velocity of the ice are.

Ice dynamics, glacier topography and climate change
These findings came directly from a study conducted by the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR), ENVEO IT GmbH, the Institute of Atmospheric and Cryospheric Sciences (ACINN) at the University of Innsbruck in Austria and the European Space Agency's (ESA) European Space Research Institute (ESRIN) in Italy. The team investigated the developments of the Patagonian Ice Fields NPI and SPI using radar interferometry data from two Earth observation missions - the Shuttle Radar Topography Mission (SRTM) and TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X).

At the DLR Earth Observation Center (EOC), Surface Elevation Change Rate (SECR) maps of the ice fields in Patagonia were created as part of the study entitled 'Heterogeneous spatial and temporal pattern of surface elevation change and mass balance of the Patagonian ice fields between 2000 and 2016'. SECR maps are highly accurate three-dimensional views of the elevation changes of Earth's surfaces calculated over a period of several years.

The DLR researchers processed the SECR data using complex techniques and algorithms. They received precise digital elevation models corresponding to the Australian summers of 2000, 2012 and 2016. Complex processing procedures developed at the EOC enabled them to achieve coverage of more than 90 percent of the NPI and SPI with valid elevation values. The study team then analysed developments in the region over 2000-2012 (epoch one) and 2012-2016 (epoch two). When they compared the data, they found highly heterogeneous spatial patterns and conflicting temporal development between the two ice fields.

Combined, the volume losses of the Patagonian Ice Fields between 2012 and 2016 were approximately nine percent lower than between 2000 and 2012. Individually, the two ice fields behave differently. The losses of the NPI increased by 31 percent over the period of study. The opposite was the case for SPI, where the loss rate fell by 20 percent.

"A major factor in the increased mass losses on the NPI during epoch two was the fact that the air temperature was higher than in epoch one, especially during the main ablation period. This leads to increasing surface melt losses. This is the dominant process for mass reduction. The ice loss caused by calving is less important as it accounts for only approximately 20 percent of the mass loss caused by melting," explains DLR scientist Dana Floricioiu from the EOC.

In the south, the spatial pattern of surface elevation changes is more complex than it is in the north, with a less uniform trend over time. In the south, flows due to calving glaciers had a greater impact on the mass balance than in the north. "Different temporal trends between the individual glaciers were due to opposite changes in flow velocities," continues Floricioiu.

The potential of bistatic InSAR for glaciers
The DLR scientists created high-resolution topographical maps from bistatic Interferometric Synthetic Aperture Radar (InSAR) data acquired by NASA's SRTM in 2000 and the follow-up TanDEM-X mission. Until now, these missions are the only ones to have been equipped with single-pass radar interferometers. The study team derived surface elevation changes for both the NPI and the SPI during epoch one and epoch two.

"The study confirms the potential of bistatic InSAR and the TanDEM-X mission in particular for the precise, detailed and almost complete mapping of surface elevation changes for both large ice fields and smaller ice basins and glacial tongues," sums up Floricioiu. The scientist emphasises that: "We hope that our results will promote the development of new remote sensing missions that are capable of repeated bistatic InSAR observations and pave the way for regular worldwide SECR mapping and mass balance estimates with improved temporal sampling."


Related Links
DLR Earth Observation Cente
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Last remaining glaciers in the Pacific will soon melt away
Columbus OH (SPX) Dec 10, 2019
The last remaining tropical glaciers between the Himalayas and the Andes will disappear in the next decade - and possibly sooner - due to climate change, a new study has found. The glaciers in Papua, Indonesia, are "the canaries in the coal mine" for other mountaintop glaciers around the world, said Lonnie Thompson, one of the senior authors of the study published in the Proceedings of the National Academy of Sciences. "These will be the first to disappear; the others will certainly follow," ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Child's play: Coding booms among Chinese children

ISS-bound Progress MS-13 lifts off from Baikonur Cosmodrome

SMAC in the DARQ: the tech trends shaping 2020

NASA awards UbiQD 2nd contract to "Tailor the Solar Spectrum for Enhanced Crop Yield for Space Missions"

ICE WORLD
SpaceX Dragon heads to ISS with science payload and general cargo

Aerojet Rocketdyne Huntsville Site Set for Large Solid Rocket Motor Production

NASA will push exploration rocket test hardware beyond its limits

China's Long March-8 rocket successfully passes engine test

ICE WORLD
Solving fossil mystery could aid quest for ancient life on Mars

Global storms on Mars launch dust towers into the sky

Glaciers as landscape sculptors - the mesas of Deuteronilus Mensae

NASA updates Mars 2020 Mission Environmental Review

ICE WORLD
China launches satellite service platform

China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

Beijing eyes creating first Earth-Moon economic zone

ICE WORLD
SpaceChain sends blockchain tech to ISS

Russian Soyuz-ST to launch OneWeb communications satellites in 2020

European Space Agency agrees record budget to meet new challenges

Europe faces up to new space challenges

ICE WORLD
UV-Bodyguard by ajuma - sophisticated technology to prevent sunburn

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures

Bio-inspired hydrogel can rapidly switch to rigid plastic

Life of a foam

ICE WORLD
Meteorite-loving microorganism

Astronomers propose a novel method of finding atmospheres on rocky worlds

Animal embryos evolved before animals

Scientists sequence genome of devil worm, deepest-living animal

ICE WORLD
Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice

NASA scientists confirm water vapor on Europa

NASA finds Neptune moons locked in 'Dance of Avoidance'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.