. 24/7 Space News .
TECH SPACE
'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures
by Staff Writers
West Lafayette IN (SPX) Dec 09, 2019

Engineers designed a material with the same amount of rod- and plate-like structures as human trabeculae and arranged them in a periodic pattern, presenting a new way to strengthen lightweight 3D-printed structures.

What do bones and 3D-printed buildings have in common? They both have columns and beams on the inside that determine how long they last.

Now, the discovery of how a "beam" in human bone material handles a lifetime's worth of wear and tear could translate to the development of 3D-printed lightweight materials that last long enough for more practical use in buildings, aircraft and other structures.

A team of researchers at Cornell University, Purdue University and Case Western Reserve University found that when they mimicked this beam and made it about 30% thicker, an artificial material could last up to 100 times longer.

"Bone is a building. It has these columns that carry most of the load and beams connecting the columns. We can learn from these materials to create more robust 3D-printed materials for buildings and other structures," said Pablo Zavattieri, a professor in Purdue's Lyles School of Civil Engineering.

Bones get their durability from a spongy structure called trabeculae, which is a network of interconnected vertical plate-like struts and horizontal rod-like struts acting as columns and beams. The denser the trabeculae, the more resilient the bone for everyday activities. But disease and age affect this density.

In a study published in the Proceedings of the National Academy of Sciences, the researchers found that even though the vertical struts contribute to a bone's stiffness and strength, it is actually the seemingly insignificant horizontal struts that increase the fatigue life of bone.

Christopher Hernandez's group at Cornell had suspected that horizontal strut structures were important for bone durability, contrary to commonly held beliefs in the field about trabeculae.

"When people age, they lose these horizontal struts first, increasing the likelihood that the bone will break from multiple cyclic loads," said Hernandez, a professor of mechanical, aerospace and biomedical engineering.

Studying these structures further could inform better ways to treat patients suffering from osteoporosis.

Meanwhile, 3D-printed houses and office spaces are making their way into the construction industry. While much faster and cheaper to produce than their traditional counterparts, even printed layers of cement would need to be strong enough to handle natural disasters - at least as well as today's homes.

That problem could be solved by carefully redesigning the internal structure, or "architecture," of the cement itself. Zavattieri's lab has been developing architected materials inspired by nature, enhancing their properties and making them more functional.

As part of an ongoing effort to incorporate nature's best strength tactics into these materials, Zavattieri's lab contributed to mechanical analysis simulations determining if horizontal struts might play a larger role in human bone than previously thought. They then designed 3D-printed polymers with architectures similar to trabeculae.

The simulations revealed that the horizontal struts were critical for extending the fatigue life of bone. A YouTube video is available at https:/?/?youtu.?be/?XK7NZMZ4YDs.

"When we ran simulations of the bone microstructure under cyclic loading, we were able to see that the strains would get concentrated in these horizontal struts, and by increasing the thickness of these horizontal struts, we were able to mitigate some of the observed strains," said Adwait Trikanad, a co-author on this work and civil engineering Ph.D. student at Purdue.

Applying loads to the bone-inspired 3D-printed polymers confirmed this finding. The thicker the horizontal struts, the longer the polymer would last as it took on load.

Because thickening the struts did not significantly increase the mass of the polymer, the researchers believe this design would be useful for creating more resilient lightweight materials.

"When something is lightweight, we can use less of it," Zavattieri said. "To create a stronger material without making it heavier would mean 3D-printed structures could be built in place and then transported. These insights on human bone could be an enabler for bringing more architected materials into the construction industry."

Research Report: "Bone-Inspired Microarchitectured Materials with Enhanced Fatigue Life"


Related Links
Purdue University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Glass from a 3D printer
Zurich, Switzerland (SPX) Nov 28, 2019
Producing glass objects using 3D printing is not easy. Only a few groups of researchers around the world have attempted to produce glass using additive methods. Some have made objects by printing molten glass, but the disadvantage is that this requires extremely high temperatures and heat-resistant equipment. Others have used powdered ceramic particles that can be printed at room temperature and then sintered later to create glass; however, objects produced in this way are not very complex. Resear ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
SMAC in the DARQ: the tech trends shaping 2020

NASA launching RiTS, a 'Robot Hotel' to the International Space Station

Spacewalkers back inside ISS after completing work to repair particle detector

China outclasses West in key education survey

TECH SPACE
SpaceX Dragon heads to ISS with science payload and general cargo

Russia plans scientific projects for super heavy rocket apart from lunar landing - sources

SPACE19+: fundamental, ambitious decisions for the future of Europe's launchers

ISRO successfully launches Cartosat-3 into polar orbit

TECH SPACE
Solving fossil mystery could aid quest for ancient life on Mars

Global storms on Mars launch dust towers into the sky

Glaciers as landscape sculptors - the mesas of Deuteronilus Mensae

NASA updates Mars 2020 Mission Environmental Review

TECH SPACE
China launches satellite service platform

China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

Beijing eyes creating first Earth-Moon economic zone

TECH SPACE
Russian Soyuz-ST to launch OneWeb communications satellites in 2020

European Space Agency agrees record budget to meet new challenges

Europe faces up to new space challenges

Germany invests 3.3 billion euro in European space exploration and becomes ESA's largest contributor

TECH SPACE
Molecular vibrations lead to high performance laser

Smart satellites to the rescue of broken satellites

Glass from a 3D printer

Dutch antennas unfolded behind the moon

TECH SPACE
Astronomers propose a novel method of finding atmospheres on rocky worlds

Scientists sequence genome of devil worm, deepest-living animal

Life under extreme conditions at hot springs in the ocean

Scientists find a place on Earth where there is no life

TECH SPACE
Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice

NASA scientists confirm water vapor on Europa

NASA finds Neptune moons locked in 'Dance of Avoidance'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.