. 24/7 Space News .
SATURN DAILY
Deserts and dunes: Earth as an analogue for Titan
by Staff Writers
Paris (ESA) Nov 09, 2015


An example of a yardang in Central Asia. For detailed images and captions about yardangs on Titan see here and on Earth see here

By comparing radar images of areas on Titan to those of Earth's deserts, scientists have identified two distinct types of sand dune on Saturn's largest moon - and discovered eroded structures that indicate that Titan's climate may have once been very different.

Titan is an intriguing moon, particularly for planetologists. It is the only natural satellite in the Solar System to have a dense atmosphere containing methane, a geologically active surface, and numerous surface lakes and seas.

The moon's thick atmosphere forms a permanent haze that obscures it from visible view. Instead, to 'see' the moon's surface we rely on radar devices such as the RADAR instrument on the Cassini spacecraft, which has been orbiting Saturn since 2004.

RADAR operates at a wavelength of 2.2 cm (Ku-band), and can be used as a synthetic aperture radar (SAR), a scatterometer, an altimeter or, in a passive mode, a radiometer.

In its study of Titan, it has revealed rivers, seas and lakes of liquid methane, and vast dune fields. Up to 17% of Titan's surface, mainly around the moon's equator, is covered with linear dunes, similar to those seen in deserts here on Earth.

Previous observations of Titan's linear dunes have revealed that they are typically 1 to 2 km wide, 1 to 4 km apart, up to 150 km high, and over 100 km long. They are mostly oriented in an east-west direction, aligned parallel to Titan's equatorial winds.

However, images of these alien dunes alone are not enough - and their 300-metre resolution too low - to allow scientists to fully explore and understand the morphology of the various sand dunes and structures on Titan's surface.

To get a better understanding, a team of scientists used a method known as comparative planetology. They studied radar images of features found here on Earth, taken by the Earth-orbiting TerraSAR-X satellite, to infer more about those on Titan.

"Comparing features on different planets is a very powerful approach," says Philippe Paillou of the Universite de Bordeaux, France, lead author of the new study.

"It helps us to understand the geology of regions we can't directly access. Fieldwork on Titan is still a dream, but by using Earth's surface as an analogue we can learn huge amounts about Titan's surface, despite it being over a billion kilometres away."

Paillou and colleagues analysed radar images of two types of surface structure seen on Earth: the aforementioned linear sand dunes, and a type of eroded structure known as mega-yardangs: wind-eroded rocky structures and ridges that form from the soft deposits found in old lake basins. While dunes are the result of winds moving and depositing material, mega-yardangs are instead created by wind erosion.

"We used TerraSAR-X images of known linear sand dunes in Egypt's Great Sand Sea and Namibia's Namib Desert, and mega-yardangs in Iran's Lut Desert and Chad's Borkou Desert," adds Paillou.

The TerraSAR-X images were of a far better resolution than those taken by RADAR, 18 m versus 300 m respectively, allowing the scientists to get a much better view of how radar interacts with geological structures on a planetary surface. The images were acquired by the satellite's X-band (3.1cm) sensor, the shortest wavelength available among radar satellites orbiting and observing the Earth, and the one most similar to RADAR's 2.2-cm Ku-band.

By analysing how each type of dune and mega-yardang backscattered the satellite's radar signal, the scientists were able to build a simple surface scattering model that accurately reproduced the radar signals for each landform. The model used local topography data courtesy of NASA's Shuttle Radar Topography Mission (SRTM), and surface property estimates derived from field observations in Egypt.

Regions within and between the linear dunes scattered the signal differently, as did the mega-yardangs' various ridges and erosion valleys. The scientists found they could accurately differentiate between bare (Egypt) and sand-covered dunes (Namibia), and between two types of mega-yardangs - young (Iran) and old (Chad).

The scientists then applied their findings to Titan
Dunes in Titan's Belet Sand Sea, an equatorial region imaged during a flyby in October 2008, were shown to be linear but of different types: some were bare, like the Egyptian dunes, and others were sand-covered like those in Namibia. "Being able to distinguish between different types of dune is significant," adds Paillou. "It's important to know that there's more than one form of linear dune on Titan, to avoid false interpretations of radar images in the future."

After exploring two other regions of Titan, imaged in December 2009 and May 2012, the team found bright features likely to be mega-yardangs, structures that are usually associated with ancient lake beds and basins on Earth. This is the first time these have been identified on Titan.

The plentiful linear dunes spied around Titan's equatorial regions are thought to be made of tiny carbon-rich particles that 'drizzle' down from the thick clouds above, and are then blown around by the moon's winds. Yardangs, however, are thought to form from sediments left behind in ancient lake basins, which are then eroded over time by unidirectional winds.

Because Titan's surface is very cold - roughly -180 C - its hydrological cycle is dominated by liquid methane and ethane, but the only regions of the moon's surface currently able to keep liquid methane stable lie around the polar regions. Although these areas are indeed studded with various lakes and seas, we do not see any existing lakes around Titan's equator, where Paillou and colleagues identified possible mega-yardangs. This implies that the moon's climate may have once been very different to what we see today.

"Finding yardangs at mid-latitudes on Titan means that lakes might have existed there at some point in the moon's past," adds Nicolas Altobelli, ESA's Cassini-Huygens Project Scientist. "As they're certainly not there now, it's a strong sign for natural climate change. This just adds to the moon's intrigue - there's much more for us to explore."

The results presented here are published in Radar Scattering of Linear Dunes and Mega-Yardangs: Application to Titan, by Philippe Paillou, Benoit Seignovert, Jani Radebaugh, and Stephen Wall, published in Icarus; doi:10.1016/j.icarus.2015.07.038


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Cassini-Huygens at ESA
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SATURN DAILY
Cassini Plunged Into Icy Plumes of Enceladus
Moffett Field CA (SPX) Nov 04, 2015
The Cassini spacecraft took a daring plunge into the icy geysers of Saturn's moon Enceladus this week in search of telltale signs of a habitable environment. The plume continuously jets thousands of miles into space from tiger stripe fissures in the moon's south pole, carrying particles from the vast salty ocean sloshing just beneath the icy surface. Cassini's sweep though the icy fountain ... read more


SATURN DAILY
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

SATURN DAILY
Amnesia Event Slows Down Opportunity Robotic Arm Work

Swiss Camera Leaves for Mars

NASA mission reveals speed of solar wind stripping Martian atmosphere

Martian desiccation

SATURN DAILY
Orion Service Module Stacking Assembly Secured For Flight

Global partnerships in orbit support economic growth on and off the Earth

Magic plant discovery could lead to growing food in space

NASA Armstrong Hosts Convergent Aeronautics Solutions Showcase

SATURN DAILY
China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

Declaration approved to promote Asia Pacific space cooperation

SATURN DAILY
US astronauts dodge ammonia on risky spacewalk

UK astronaut dreams of heavenly Christmas pudding

NASA drops Boeing from race for $3.5 billion cargo contract

Space Station offers valuable lessons about life support systems

SATURN DAILY
Commercial Spaceflight Gets A Boost With Latest Congressional Moves

The 10th Arianespace mission of 2015 is "go" for its Ariane 5 liftoff next week

USAF releases first Booster Propulsion Technology Maturation BAA Award

SpaceLoft demonstrates capability to eject separate payloads requiring independent re-entry

SATURN DAILY
Distant world's weather is mixed bag of hot dust and molten rain

Disk gaps don't always signal planets

Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

SATURN DAILY
New ORNL catalyst features unsurpassed selectivity

Cyclic healing removes defects in metals while maintaining strength

Microscopy unveils lithium-rich transition metal oxides

Scanning reveals anomalies in Great Pyramid at Giza









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.