Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

Deducing the properties of a new form of diamond
by Staff Writers
Washington DC (SPX) Dec 04, 2017

Atomic structure of diamond (left) compared with amorphous diamond (right). Diamond is crystalline and anisotropic, meaning that its properties are directional. The single crystalline diamond shown in the left picture contains lots of facets. In contrast, amorphous diamond is isotropic like glass, and it may be cut to any shape including an ideal sphere.

Earlier this year, amorphous diamond was synthesized for the first time using a technique involving high pressures, moderately high temperatures and a tiny amount of glassy carbon as starting material. A father-son team at Clemson University has now successfully calculated a number of basic physical properties for this new substance, including elastic constants and related quantities. The results are reported this week in Applied Physics Letters, from AIP Publishing.

Diamond is a form of pure carbon in which the atoms are arranged in a crystal lattice, with each carbon atom surrounded by four other carbons at the corners of a tetrahedron. The carbon-carbon bonds in diamond are known as sp3 bonds. The orderly arrangement of tetrahedral structures which repeats over long distances in a diamond crystal produces a hard material with high temperature stability. Diamond is thus both a valuable gemstone and a material with a variety of technological uses.

Amorphous carbon, on the other hand, has varying fractions of sp3-bonded carbon in a disordered, or amorphous, matrix. The amorphous structure produces very desirable mechanical properties. The amount of sp3 bonding in amorphous carbon is not as high as in pure diamond. A fraction of the carbon-carbon bonds are of sp2-type, found in other carbon forms such as graphite.

Sp3-bonded amorphous silicon and germanium have been known for many years and are widely used in photovoltaics, thin film sensors and transistors, and other high-tech applications. It is of great interest, then, to find ways to make amorphous diamond that retains a high fraction of sp3 bonds. While the work reported earlier this year did just that, samples are not yet widely available for testing. Preliminary tests did show that these amorphous diamonds are quite dense, optically transparent and strong.

The father-son team of Arthur and John Ballato have stepped into this knowledge gap to calculate some not-yet-measured physical properties for this new form of diamond. "We employed a modeling approach by which one can use the properties of crystalline diamond to deduce the properties of the glassy diamond analog," said Ballato. "In this work, we inferred the elastic properties of this new phase of diamond from measured properties of crystalline diamond."

The procedure they employed involves a computer model of a crystal that is computationally homogenized to create an amorphous version of the substance. The model of the crystal uses simple, classical physics and describes the carbon-carbon bonds as springs. The homogenization method employed is known as the Voigt-Reuss-Hill (VRH) technique.

Using this approach, the Ballatos computed a number of important bulk properties, including Young's modulus, Poisson's ratio and other elastic constants for the substance. They used the VRH homogenization approach in previous work to study glassy sapphire and materials of interest for use in high power lasers.

The VRH method is simpler and more straightforward than sophisticated quantum mechanical methods that are also available, but the properties calculated in this work can serve as a baseline, both for more sophisticated, but expensive modeling, as well as for future experimental measurements.

Research Report: "Deduced elasticity of sp3-bonded amorphous diamond"

Ultrathin and flat graphene metalenses gain morace properties
Seoul, South Korea (SPX) Nov 30, 2017
On the quest for miniaturization, scientists at the Center for Integrated Nanostructure Physics, within the Institute for Basic Science (IBS, South Korea), in collaboration with researchers from the University of Birmingham and the Korea Advanced Institute of Science and Technology (KAIST), develop credit card-thick, flat lenses with tunable features. These optical devices, made of graphene and ... read more

Related Links
American Institute of Physics
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Does the Outer Space Treaty at 50 need a rethink

NASA to send critical science, instruments to Space Station

Can a magnetic sail slow down an interstellar probe

SSL Selected to Conduct Power and Propulsion Study for NASA's Deep Space Gateway Concept

Flat-Earther's self-launch plan hits a snag

SSTL ships CARBONITE-2 and Telesat's LEO-1 for PSLV launch

Aerojet Rocketdyne supports ULA Delta II launch of JPSS-1

Old Rivals India, China Nurture New Rivalry in Satellite Launch Business

Gadgets for Mars

Ice shapes the landslide landscape on Mars

Winds Blow Dust off the Solar Panels Improving Energy Levels

Previous evidence of water on Mars now identified as grainflows

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

Need to double number of operational satellites: ISRO chief

Space Launch plans UK industry tour

Astronaut meets volcano

European Space Week starts in Estonia

New way to write magnetic info could pave the way for hardware neural networks

Device could reduce the carbon footprint of ethylene production

Researchers inadvertently boost surface area of nickel nanoparticles for catalysis

X-rays reveal the biting truth about parrotfish teeth

First known interstellar visitor is an 'oddball'

Lava or Not, Exoplanet 55 Cancri e Likely to have Atmosphere

Images of strange solar system visitor peel away some of the mystery

Familiar-Looking Messenger from Another Solar System

Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement