. 24/7 Space News .
WATER WORLD
Decoding ocean signals
by Staff Writers
Santa Barbara CA (SPX) Feb 10, 2017


File image.

With the ocean absorbing more carbon dioxide (CO2) over the past decade, less of the greenhouse gas is reaching the Earth's atmosphere. That's decidedly good news, but it comes with a catch: Rising levels of CO2 in the ocean promote acidification, which breaks down the calcium carbonate shells of some marine organisms.

The cause of this recent increase in oceanic CO2 uptake, which has implications for climate change, has been a mystery. But new research from UC Santa Barbara geographer Timothy DeVries and colleagues demonstrates that a slowdown of the ocean's overturning circulation is the likely catalyst. Their findings appear in the journal Nature.

"Such a slowdown is consistent with the projected effects of anthropogenic climate change, where warming and freshening of the surface ocean from melting ice caps leads to weaker overturning circulation," DeVries explained. "But over the time periods we studied, it's not possible to say whether the slowdown is related to natural climate variability or to climate change caused by human activity."

DeVries and fellow researchers Mark Holzer of the University of New South Wales in Sydney and Francois Primeau of UC Irvine compiled existing oceanographic tracer data - measurements of temperature, salinity, CFCs (manmade gases that dissolve into the ocean) and carbon-14 - and separated it into three decade-long time periods: the 1980s, the 1990s and the 2000s.

Subsequent computer analysis of that data enabled the researchers to characterize ocean circulation - the transfer of water from the surface to the deep ocean and back again - for each time period. They then analyzed ocean-atmosphere carbon exchange and ocean carbon cycling within their circulation model.

"As the circulation changed from decade to decade --1980s to 1990s to 2000s - the model predicted a big dip in oceanic CO2 uptake during the 1990s, then a large increase in uptake during the 2000s," DeVries explained. "Furthermore, these swings were attributed directly to the changes in ocean circulation."

According to DeVries, this finding may seem counterintuitive. Prevailing scientific wisdom asserts that the deceleration of circulation diminishes the ocean's ability to absorb anthropogenic CO2 from the atmosphere as surface waters warm and become saturated with CO2.

"While that is true, there is another effect that appears to be more important in the short term," DeVries said. "The weaker overturning circulation brings less naturally CO2-rich deep waters to the surface, which limits how much of that gas in the deep ocean escapes to the atmosphere. That causes the ocean to absorb more CO2 from the atmosphere."

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Santa Barbara
Water News - Science, Technology and Politics






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Scientists find huge ancient landslide on Great Barrier Reef
Sydney (AFP) Feb 8, 2017
A massive underwater landslide that could have triggered a towering tsunami some 300,000 years ago has been discovered in the depths of Australia's Great Barrier Reef, scientists said Wednesday. The ancient landslide, likely caused by a strong earthquake that could have generated a tsunami wave 27 metres (90 feet) high, was discovered unexpectedly by researchers conducting three-dimensional ... read more


WATER WORLD
The Outer Space Treaty has been remarkably successful - but is it fit for the modern age?

Full Braking at Alpha Centauri

New Era of Space Travel: Private Station May Replace ISS by Late 2020

Progress MS-03 cargo spacecraft to reenter January 31

WATER WORLD
ISRO tests C25 Cryogenic Upper Stage of GSLV MkIII

Russia to call tender for 2nd Phase of Vostochny Spaceport construction in Fall

NASA sounding rocket launches into Alaskan night

Russia to check space flight engines over faulty parts

WATER WORLD
Swirling spirals at the north pole of Mars

Similar-Looking Ridges on Mars Have Diverse Origins

Commercial Crew's Role in Path to Mars

Meteorite reveals 2 billion years of volcanic activity on Mars

WATER WORLD
China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

WATER WORLD
Iridium Adds Eighth Launch with SpaceX for Satellite Rideshare

Space, Ukrainian-style: Through Crisis to Revival

ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

WATER WORLD
New material that contracts when heated holds great industrial potential

Flipping the switch on ammonia production

Aavid Thermacore Europe's technology will keep solar satellite cool

Scientists discover helium chemistry

WATER WORLD
Dedicated Planet Imager Opens Its Eyes to Other Worlds

New planet imager delivers first science at Keck

First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

WATER WORLD
New Horizons Refines Course for Next Flyby

It's Never 'Groundhog Day' at Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno

Experiment resolves mystery about wind flows on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.