. 24/7 Space News .
STELLAR CHEMISTRY
Dark matter is likely cold not fuzzy
by Staff Writers
Seattle WA (SPX) Jul 25, 2017


This is a depiction of hydrogen gas within the intergalactic medium, or IGM, with bright areas indicating high gas density. Credit Vid Irsic

Dark matter is the aptly named unseen material that makes up the bulk of matter in our universe. But what dark matter is made of is a matter of debate.

Scientists have never directly detected dark matter. But over decades, they have proposed a variety of theories about what type of material - from new particles to primordial black holes - could comprise dark matter and explain its many effects on normal matter. In a paper published July 20 in the journal Physical Review Letters, an international team of cosmologists uses data from the intergalactic medium - the vast, largely empty space between galaxies - to narrow down what dark matter could be.

The team's findings cast doubt on a relatively new theory called "fuzzy dark matter," and instead lend credence to a different model called "cold dark matter." Their results could inform ongoing efforts to detect dark matter directly, especially if researchers have a clear idea of what sorts of properties they should be seeking.

"For decades, theoretical physicists have tried to understand the properties of the particles and forces that must make up dark matter," said lead author Vid Irsic, a postdoctoral researcher in the Department of Astronomy at the University of Washington. "What we have done is place constraints on what dark matter could be - and 'fuzzy dark matter,' if it were to make up all of dark matter, is not consistent with our data."

Scientists had drawn up both the "fuzzy" and "cold" dark-matter theories to explain the effects that dark matter appears to have on galaxies and the intergalactic medium between them.

Cold dark matter is the older of these two theories, dating back to the 1980s, and is currently the standard model for dark matter. It posits that dark matter is made up of a relatively massive, slow-moving type of particle with "weakly interacting" properties. It helps explain the unique, large-scale structure of the universe, such as why galaxies tend to cluster in larger groups.

But the cold dark matter theory also has some drawbacks and inconsistencies. For example, it predicts that our own Milky Way Galaxy should have hundreds of satellite galaxies nearby. Instead, we have only a few dozen small, close neighbors.

The newer fuzzy dark matter theory addressed the deficiencies of the cold dark matter model. According to this theory, dark matter consists of an ultralight particle, rather than a heavy one, and also has a unique feature related to quantum mechanics. For many of the fundamental particles in our universe, their large-scale movements - traveling distances of meters, miles and beyond - can be explained using the principles of "classic" Newtonian physics.

Explaining small-scale movements, such as at the subatomic level, requires the complex and often contradictory principles of quantum mechanics. But for the ultralight particle predicted in the fuzzy dark matter theory, movements at incredibly large scales - such as from one end of a galaxy to the other - also require quantum mechanics.

With these two theories of dark matter in mind, Irsic and his colleagues set out to model the hypothetical properties of dark matter based on relatively new observations of the intergalactic medium, or IGM. The IGM consists largely of dark matter - whatever that may be - along with hydrogen gas and a small amount of helium. The hydrogen within IGM absorbs light emitted from distant, bright objects, and astronomers have studied this absorption for decades using Earth-based instruments.

The team looked at how the IGM interacted with light emitted by quasars, which are distant, massive, starlike objects. One set of data came from a survey of 100 quasars by the European Southern Observatory in Chile. The team also included observations of 25 quasars by the Las Campanas Observatory in Chile and the W.M. Keck Observatory in Hawaii.

Using a supercomputer at the University of Cambridge, Irsic and co-authors simulated the IGM - and calculated what type of dark matter particle would be consistent with the quasar data. They discovered that a typical particle predicted by the fuzzy dark matter theory is simply too light to account for the hydrogen absorption patterns in the IGM. A heavier particle - similar to predictions of the traditional cold dark matter theory - is more consistent with their simulations.

"The mass of this particle has to be larger than what people had originally expected, based on the fuzzy dark matter solutions for issues surrounding our galaxy and others," said Irsic.

An ultralight "fuzzy" particle could still exist. But it cannot explain why galactic clusters form, or other questions like the paucity of satellite galaxies around the Milky Way, said Irsic. A heavier "cold" particle remains consistent with the astronomical observations and simulations of the IGM, he added.

The team's results do not address all of the longstanding drawbacks of the cold dark matter model. But Irsic believes that further mining of data from the IGM can help resolve the type - or types - of particles that make up dark matter. In addition, some scientists believe that there are no problems with the cold dark matter theory. Instead, scientists may simply not understand the complex forces at work in the IGM, Irsic added.

"Either way, the IGM remains a rich ground for understanding dark matter," said Irsic.

Research paper

STELLAR CHEMISTRY
Flashes of light on the dark matter
Trieste, Italy (SPX) Jul 24, 2017
A web that passes through infinite intergalactic spaces, a dense cosmic forest illuminated by very distant lights and a huge enigma to solve. These are the picturesque ingredients of a scientific research - carried out by an international team composed of researchers from the International School for Adavnced Studies (SISSA) and the Abdus Salam International Center for Theoretical Physics (ICTP) ... read more

Related Links
University of Washington
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Soyuz rocket rolled out, ready to launch

Astronauts gear up for space with tough Russian training

Russian sanctions won't affect cooperation in space

NASA Offers Space Station as Catalyst for Discovery in Washington

STELLAR CHEMISTRY
Vega to launch two Earth Observation Satellites for Italy, Israel and France

Three Up, Three Down as NASA Tests RS-25 Flight Controller

Iran in 'successful' test of satellite-launch rocket

Aerojet Rocketdyne's RS-25 Flight Controller Goes Three for Three in SLS Test

STELLAR CHEMISTRY
Portals to new worlds: Martian exploration near the North Pole

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

STELLAR CHEMISTRY
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

STELLAR CHEMISTRY
Good Night, Lisa Pathfinder

A Final Farewell to LISA Pathfinder

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

STELLAR CHEMISTRY
Multitasking monolayers

Writing with the electron beam: Now in silver

Scientists announce the quest for high-index materials

A new synthesis route for alternative catalysts of noble metals

STELLAR CHEMISTRY
SETI Institute-Unistellar Partnership Promises to Revolutionize Amateur Astronomy

Holographic imaging could sample and identify living microbes in the outer solar system

Why looking for aliens is good for society

Breakthrough Starshot launches tiny spacecraft in quest for Alpha Centauri

STELLAR CHEMISTRY
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

NASA's New Horizons Team Strikes Gold in Argentina









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.