Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Crystallization frustration predicts metallic glass formation
by Staff Writers
Durham NC (SPX) Aug 04, 2016


This is a visual representation of the difference between an organized, crystalline structure and an amorphous glass structure. Image courtesy Eric Perim Martins, Duke University. For a larger version of this image please go here.

Researchers have discovered a way to predict which alloys will form metallic glasses. The research could pave the way for new strong, conductive materials.

Metallic glasses are sometimes formed when molten metal is cooled too fast for its atoms to arrange in a structured, crystalline order. The result is a material with numerous desirable properties. Because they are metals, metallic glasses have high hardness and toughness and good thermal conductivity.

Because their structure is disorganized, they are easy to process and shape and difficult to corrode. Thanks to these characteristics, metallic glasses are used in a wide array of applications, including electrical applications, nuclear reactor engineering, medical industries, structural reinforcement and razor blades.

While metallic glass has been around for decades, scientists have no clue which combinations of elements will form them. The only way to come up with new metallic glasses to date has been to cook up new recipes in the laboratory with only a few rules of thumb for guidance and hope for the best - a costly endeavor in both time and money.

In a new study, however, researchers from Duke University, in collaboration with groups from Harvard University and Yale University, describe a method that can predict which binary alloys will form metallic glasses. Their technique involves computing and comparing the many pockets of different structures and energies that could be found within a solidified alloy.

"When you get a lot of structures forming next to one another that are different but still have similar internal energies, you get a sort of frustration as the material tries to crystalize," said Eric Perim, a postdoctoral researcher working in the laboratory of Stefano Curtarolo, professor of mechanical engineering and materials science and director of the Center for Materials Genomics at Duke. "The material can't decide which crystalline structure it wants to converge to, and a metallic glass emerges. What we created is basically a measure of that confusion."

To determine the likelihood of an alloy forming a glass, Curtarolo, Perim and their colleagues broke its chemistry down into numerous sections, each containing only a handful of atoms. They then turned to a prototype database to simulate the hundreds of structures each section could potentially take.

Called the AFLOW library, the database stores information on atomic structures that are commonly observed in nature. Using these examples, the program computes what a novel combination of elements would look like with these structures. For example, the atomic structure of sodium chloride - better known as salt - may be used to build a potential structure for copper zirconium.

These simulations produce estimations of characteristics for hundreds of structural forms that a material could take. One characteristic, called an atomic environment, looks at the geometrical arrangement of an atom's closest neighbors. Another calculates the amount of energy stored in each of these atomic structures.

To determine the likelihood of an alloy forming a metallic glass, the program compares these two characteristics between the hundreds of different structures that could be found throughout the material. If groups of atoms near one another have similar energies, they want to form similar structures. But if the rapid cooling prevents this, a metallic glass emerges.

"The big advantage to our work is that it's high-throughput, because doing this experimentally is way too time-consuming," said Cormac Toher, an assistant research professor in Curtarolo's laboratory. "You cannot check all compositions of all systems in the laboratory. That would literally take forever. The idea behind this is that we can screen a large number of materials in a couple of days and single out the most likely ones that should be checked out."

The group then put their confusion-measuring program to the test to see if it could accurately predict metallic glasses that are already known. They were able to correctly identify 73 percent - a number they hope will improve as they continue to increase the structural information and simulations stored in their database.

Based on their initial work, they believe about one-sixth of the alloys in their system should make metallic glass. That's more than 250 potential materials, of which only about a couple dozen have been discovered.

"If you go to Venice you'll see people blowing bottles of glass," said Curtarolo. "You can do that with metallic glasses as well. You can make lightweight, very durable objects without any seams. But trying to scale these up is difficult.

"The larger the lump, the longer it takes its center to cool, and the more likely it is to form a normal crystalline structure. But there might be undiscovered chemical combinations that would be easier to work with, cost less, or have other, more desirable properties. We just have to figure out where to look for them."

Besides refining their results for binary alloys, the researchers plan to extend their algorithm to alloys that contain three elements, as they are more likely to form glasses but are much more difficult and time-consuming to model. Their database, however, has only about one-tenth of the entries for these alloys as it does for binary alloys, so computer clusters around the world will first need to work for some time to come.

The results were published August 2, 2016, in Nature Communications. "Spectral Descriptors for Bulk Metallic Glasses Based on the Thermodynamics of Competing Crystalline Phases." Eric Perim, Dongwoo Lee, Yanhui Liu, Cormac Toher, Pan Gong, Yanglin Li, W. Neal Simmons, Ohad Levy, Joost J. Vlassak, Jan Schroers and Stefano Curtarolo. Nature Communications, Aug. 2, 2016. DOI: 10.1038/NCOMMS12315


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Duke University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Unlocking the secrets of creeping concrete
Washington DC (SPX) Aug 04, 2016
College students have used it to make cheap furniture, China has had shortages of it, and main character Michael Scott of "The Office" once famously buried his face in it. Concrete is everywhere - a ubiquity owed to its strength as a building material. Despite its strength, however, it has a pernicious but inescapable tendency to "creep," or deform progressively under mechanical stress, which le ... read more


TECH SPACE
As dry as the moon

China's Jade Rabbit lunar rover dies in blaze of online glory

US company gets historic nod to send lander to moon

Heart hazard for Apollo astronauts: study

TECH SPACE
Astrobiologists study Mars on Earth

Mars Gullies Likely Not Formed by Liquid Water

Opportunity Surpasses 43 Kilometers on the Odometer

Digging deeper into Mars

TECH SPACE
Autonomous interplanetary travel one step closer to reality

After Deadly Crash, Virgin Galactic to Fly Its Spaceplane Once More

Tile Bonding Begins for Orion's First Mission Atop Space Launch System Rocket

Russia, US Discuss Lunar Station for Mars Mission

TECH SPACE
China begins developing hybrid spacecraft

China prepares for new round of manned space missions

China to expand int'l astronauts exchange

China's Agreement with United Nations to Help Developing Countries Get Access to Space

TECH SPACE
JSC pursues collection of new technologies for ISS

Dream Chaser Spacecraft on Track to Supply Cargo to ISS

Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

TECH SPACE
Russia to Launch Angara-1.2 Rocket With Korean Satellite KOMPSAT-6 in 2020

NASA Orders Second SpaceX Crew Mission to International Space Station

Russia Postpones Launch of Proton Rocket With US Satellite Until October 10

The rise of commercial spaceports

TECH SPACE
Astronomers catalogs most likely 'second-Earth' candidates

Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

NASA's Next Planet Hunter Will Look Closer to Home

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

TECH SPACE
Aladin wind probe ready for Aeolus

A mini-antenna for the data processing of tomorrow

New metamaterials can change properties with a flick of a light-switch

Flexible building blocks of the future




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement