. 24/7 Space News .
SOLAR SCIENCE
Comprehensive Model Captures Life of a Solar Flare
by Staff Writers
Boulder CO (SPX) Jan 18, 2019

This visualization is an animation of the solar flare modeled in the new study. The violet color represents plasma with temperature less than 1 million Kelvin. Red represents temperatures between 1 million and 10 million Kelvin, and green represents temperatures above 10 million Kelvin. (Image: Courtesy Mark Cheung, Lockheed Martin, and Matthias Rempel, NCAR) - see video here

A team of scientists has, for the first time, used a single, cohesive computer model to simulate the entire life cycle of a solar flare: from the buildup of energy thousands of kilometers below the solar surface, to the emergence of tangled magnetic field lines, to the explosive release of energy in a brilliant flash.

The accomplishment, detailed in the journal Nature Astronomy, sets the stage for future solar models to realistically simulate the Sun's own weather as it unfolds in real time, including the appearance of roiling sunspots, which sometimes produce flares and coronal mass ejections. These eruptions can have widespread impacts on Earth, from disrupting power grids and communications networks, to damaging satellites and endangering astronauts.

Scientists at the National Center for Atmospheric Research (NCAR) and the Lockheed Martin Solar and Astrophysics Laboratory led the research. The comprehensive new simulation captures the formation of a solar flare in a more realistic way than previous efforts, and it includes the spectrum of light emissions known to be associated with flares.

"This work allows us to provide an explanation for why flares look like the way they do, not just at a single wavelength, but in visible wavelengths, in ultraviolet and extreme ultraviolet wavelengths, and in X-rays," said Mark Cheung, a staff physicist at Lockheed Martin Solar and Astrophysics Laboratory and a visiting scholar at Stanford University. "We are explaining the many colors of solar flares."

The research was funded largely by NASA and by the National Science Foundation (NSF), which is NCAR's sponsor.

Bridging the Scales
For the new study, the scientists had to build a solar model that could stretch across multiple regions of the Sun, capturing the complex and unique physical behavior of each one.

The resulting model begins in the upper part of the convection zone - about 10,000 kilometers below the Sun's surface - rises through the solar surface, and pushes out 40,000 kilometers into the solar atmosphere, known as the corona. The differences in gas density, pressure, and other characteristics of the Sun represented across the model are vast.

To successfully simulate a solar flare from emergence to energy release, the scientists needed to add detailed equations to the model that could allow each region to contribute to the solar flare evolution in a realistic way. But they also had to be careful not to make the model so complicated that it would no longer be practical to run with available supercomputing resources.

"We have a model that covers a big range of physical conditions, which makes it very challenging," said NCAR scientist Matthias Rempel. "This kind of realism requires innovative solutions."

To address the challenges, Rempel borrowed a mathematical technique historically used by researchers studying the magnetospheres of Earth and other planets. The technique, which allowed the scientists to compress the difference in time scales between the layers without losing accuracy, enabled the research team to create a model that was both realistic and computationally efficient.

The next step was to set up a scenario on the simulated Sun. In previous research using less complex models, scientists have needed to initiate the models nearly at the moment when the flare would erupt to be able to get a flare to form at all.

In the new study, the team wanted to see if their model could generate a flare on its own. They started by setting up a scenario with conditions inspired by a particularly active sunspot observed in March 2014. The actual sunspot spawned dozens of flares during the time it was visible, including one very powerful X-class and three moderately powerful M-class flares. The scientists did not try to mimic the 2014 sunspot accurately; instead they roughly approximated the same solar ingredients that were present at the time - and that were so effective at producing flares.

Then they let the model go, watching to see if it would generate a flare on its own.

"Our model was able to capture the entire process, from the buildup of energy to emergence at the surface to rising into the corona, energizing the corona, and then getting to the point when the energy is released in a solar flare," Rempel said.

Now that the model has shown it is capable of realistically simulating a flare's entire life cycle, the scientists are going to test it with real-world observations of the Sun and see if it can successfully simulate what actually occurs on the solar surface.

"This was a stand-alone simulation that was inspired by observed data," Rempel said. "The next step is to directly input observed data into the model and let it drive what's happening. It's an important way to validate the model, and the model can also help us better understand what it is we're observing on the Sun."

Research Report: "A Comprehensive Three-Dimensional Radiative Magnetohydrodynamic Simulation of a Solar Flare"


Related Links
National Center For Atmospheric Research
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
New findings reveal the behavior of turbulence in the exceptionally hot solar corona
Plainsboro NJ (SPX) Jan 02, 2019
The sun defies conventional scientific understanding. Its upper atmosphere, known as the corona, is many millions of degrees hotter than its surface. Astrophysicists are keen to learn why the corona is so hot, and scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have completed research that may advance the search. The scientists found that formation of magnetic bubbles known as plasmoids in a conducting fluid like plasma - the hot, charged state of mat ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Beans to be next vegetable on astronauts' menu by 2021

Moon sees first cotton-seed sprout

Space dreams: Alum Frank Bunger's quest to make space tourism a reality

NASA Astronaut Hague Who Failed to Reach ISS May Make One-Year Flight

SOLAR SCIENCE
SLS liquid hydrogen tank test article loaded into test stand

Closing The Space Launch Information Gap

SpaceX laying off 10 percent of workforce

Mechanisms are Critical to All Space Vehicles

SOLAR SCIENCE
Team selected by Canadian Space Agency to study Mars minerals

UK tests self driving robots for Mars

ExoMars mission has good odds of finding life on Mars if life exists.

Mars Express gets festive: A winter wonderland on Mars

SOLAR SCIENCE
China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

SOLAR SCIENCE
A new era of global aircraft surveillance is on the horizon as Aireon completes system deployment

Australia's 'space city' hosts rising stars from around the globe

Competition for Young Space Entrepreneurs launched

SpaceX Falcon 9 completes Iridium Next launch campaign

SOLAR SCIENCE
Kiel physicists discover new effect in the interaction of plasmas with solids

Nebraska leads $11 million study to develop radiation exposure drugs

Penn engineers 3D print smart objects with 'embodied logic'

Raytheon awarded $9.3M contract for Spy-1 radar work

SOLAR SCIENCE
Double star system flips planet-forming disk into pole position

The Truth is Out There: New Online SETI Tool Tracks Alien Searches

First comprehensive, interactive tool to track SETI searches

Potential for life on planet around Barnard's Star

SOLAR SCIENCE
Scientist Anticipated "Snowman" Asteroid Appearance

New Ultima Thule Discoveries from NASA's New Horizons

New Horizons unveils Ultima and Thule as a binary Kuiper

NASA says faraway world Ultima Thule shaped like 'snowman'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.