. 24/7 Space News .
STELLAR CHEMISTRY
Closing in on the elusive rotational-vibrational CH5+ spectra
by Staff Writers
Washington DC (SPX) May 25, 2016


illustration only

Protonated methane, a.k.a. CH5+, is a highly unusual molecule that scientists and astronomers suspect may be found within the interstellar medium where stars and planets are formed.

To identify molecules on Earth or in outer space, scientists typically record the spectrum of light absorbed - each molecule has its own unique spectrum. CH5+, consists of a central carbon atom with five hydrogen atoms constantly moving around it, which makes it difficult to interpret its spectrum.

In The Journal of Chemical Physics, from AIP Publishing, Queen's University researchers in Canada report comparing, for the first time at a detailed level, experimental v. theory for CH5+.

The group's work was inspired by the complexity of CH5+. "No one has been able to understand its spectrum," said Tucker Carrington Jr., a professor of theoretical chemistry. "Spectroscopists usually attempt to sort rotational-vibrational levels into groups, each of which is associated with a vibrational state, but it completely fails for CH5+."

By focusing on quirks of molecules that don't fit neatly into paradigms, new ideas tend to emerge. "Using experimental methods in 2015, Asvany, Yamada, Schlemmer, and colleagues at the University of Cologne, for the first time, observed and assigned differences of CH5+ energy levels, which opened the door to a detailed comparison between theory and experiment," Carrington said.

To gain a better understanding of the motion of nuclei, "it's common to first approximately separate vibration and rotation, and then to assume that small amplitude vibration occurs within the vicinity of the equilibrium geometry of the molecule," he explained.

Vibration and rotation are inseparable in CH5+ because there are 120 low-lying equivalent equilibrium structures, and the amplitude of vibration is quite large.

Computing and analyzing the spectrum of CH5+, as you might expect, involves complex mathematics. "It's necessary to numerically solve the Schrodinger equation by calculating eigenvalues of a large Hamiltonian matrix," Carrington pointed out. "This is extremely difficult because the size of the matrix is larger than 10^9, so we use the Lanczos algorithm."

The significance of this work, done together by Xiao-Gang Wang, research associate, and Carrington, is that by comparing experiment and theory for CH5+ they were able to develop the first possible new assignment of the experimental results - something no one expected so soon.

"Our theoretical understanding is far from complete, but it's a good start," Carrington noted. "A year ago, most researchers within this field wouldn't have expected that theory would be good enough to suggest a possible experimental misassignment. Our new assignment reduces errors from about 30 cm-1 to 2 cm-1."

The success of the group's calculations implies that it may now be possible to begin interpreting and understanding the detailed rotational-vibrational CH5+ spectra previously recorded by several other groups. For example, CH5+ plays a key role in George A. Olah's "superacid chemistry," which earned him the 1994 Nobel Prize in chemistry.

Next, Carrington and colleagues will "compute the intensities of transitions, which will enable a more complete comparison with experimental spectra," he added.

Research paper: "Calculated Rotation-Bending Energy Levels of CH+5 and a Comparison with Experiment," is authored by Xiao-Gang Wang and Tucker Carrington Jr. The article will appear in The Journal of Chemical Physics on May 24, 2016 [DOI: 10.1063/1.4948549].


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Supernova Reserve Fuel Tank Clue to Big Parents
Canberra, Australia (SPX) May 20, 2016
Some supernovae have a reserve tank of radioactive fuel that cuts in and powers their explosions for three times longer than astronomers had previously thought. A team of astronomers jointly led by Dr. Ivo Seitenzahl from The Australian National University (ANU) detected the faint afterglow of a supernova, and found it was powered by radioactive cobalt-57. The discovery gives important new ... read more


STELLAR CHEMISTRY
SwRI scientists discover fresh lunar craters

NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

STELLAR CHEMISTRY
Are mystery Mars plumes caused by space weather?

Opportunity takes panorama; uses wheel to scuff soil

Ancient tsunami evidence on Mars reveals life potential

Hubble Takes Mars Portrait Near Close Approach

STELLAR CHEMISTRY
Space travel now in a parachute soon available

Airbus Defence and Space starts Orion service module assembly

Interns Make Archived NASA Planetary Science Data More Accessible

Out of this world: 'Moon and Mars veggies' grow in Dutch greenhouse

STELLAR CHEMISTRY
China's new launch center prepares for maiden mission

China, U.S. hold first dialogue on outer space safety

Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

STELLAR CHEMISTRY
International Space Cooperation Strongest in Times of Political Crises

Alexander Gerst to be Space Station commander

ISS completes 100,000th orbit of Earth: mission control

Canadian astronaut to join ISS in 2018

STELLAR CHEMISTRY
UK's First Spaceport Could Be Beside the Sea

SpaceX Return of Samples Marks Next Step in One-Year Mission Science

Arianespace to supply payload dispenser systems for OneWeb constellation

Arianespace's Soyuz is approved for its early morning liftoff on May 24

STELLAR CHEMISTRY
Kepler-223 System Offers Clues to Planetary Migration

Star Has Four Mini-Neptunes Orbiting in Lock Step

Exoplanets' Orbits Point to Planetary Migration

Synchronized planets reveal clues to planet formation

STELLAR CHEMISTRY
A digital Rochester Cloak to fit all sizes

How the giant magnetoelectric effect occurs in bismuth ferrite

Rice de-icer gains anti-icing properties

Combining nanotextures with Leidenfrost effect for water repellency









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.