. 24/7 Space News .
TIME AND SPACE
Clemson scientists measure all of the starlight ever produced by the observable universe
by Staff Writers
Clemson SC (SPX) Nov 30, 2018

file illustration only

From their laboratories on a rocky planet dwarfed by the vastness of space, Clemson University scientists have managed to measure all of the starlight ever produced throughout the history of the observable universe.

Astrophysicists believe that our universe, which is about 13.7 billion years old, began forming the first stars when it was a few hundred million years old. Since then, the universe has become a star-making tour de force. There are now about two trillion galaxies and a trillion-trillion stars. Using new methods of starlight measurement, Clemson College of Science astrophysicist Marco Ajello and his team analyzed data from NASA's Fermi Gamma-ray Space Telescope to determine the history of star formation over most of the universe's lifetime.

A collaborative paper titled "A gamma-ray determination of the Universe's star-formation history" was published Nov. 30 in the journal Science and describes the results and ramifications of the team's new measurement process.

"From data collected by the Fermi telescope, we were able to measure the entire amount of starlight ever emitted. This has never been done before," said Ajello, who is lead author of the paper. "Most of this light is emitted by stars that live in galaxies. And so, this has allowed us to better understand the stellar-evolution process and gain captivating insights into how the universe produced its luminous content."

Putting a number on the amount of starlight ever produced has several variables that make it difficult to quantify in simple terms. But according to the new measurement, the number of photons (particles of visible light) that escaped into space after being emitted by stars translates to 4x10^84.

Or put another way: 4,000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000 photons.

Despite this stupendously large number, it is interesting to note that with the exception of the light that comes from our own sun and galaxy, the rest of the starlight that reaches Earth is exceedingly dim - equivalent to a 60-watt light bulb viewed in complete darkness from about 2.5 miles away. This is because the universe is almost incomprehensibly huge. This is also why the sky is dark at night, other than light from the moon, visible stars and the faint glow of the Milky Way.

The Fermi Gamma-ray Space Telescope was launched into low orbit on June 11, 2008, and recently marked its 10-year anniversary. It is a powerful observatory that has provided enormous amounts of data on gamma rays (the most energetic form of light) and their interaction with the extragalactic background light (EBL), which is a cosmic fog composed of all the ultraviolet, visible and infrared light emitted by stars or from dust in their vicinity. Ajello and postdoctoral fellow Vaidehi Paliya analyzed almost nine years of data pertaining to gamma-ray signals from 739 blazars.

Blazars are galaxies containing supermassive black holes that are able to release narrowly collimated jets of energetic particles that leap out of their galaxies and streak across the cosmos at nearly the speed of light. When one of these jets happens to be pointed directly at Earth, it is detectable even when originating from extremely far away. Gamma ray photons produced within the jets eventually collide with the cosmic fog, leaving an observable imprint. This enabled Ajello's team to measure the density of the fog not just at a given place but also at a given time in the history of the universe.

"Gamma-ray photons traveling through a fog of starlight have a large probability of being absorbed," said Ajello, an assistant professor in the department of physics and astronomy. "By measuring how many photons have been absorbed, we were able to measure how thick the fog was and also measure, as a function of time, how much light there was in the entire range of wavelengths."

Using galaxy surveys, the star-formation history of the universe has been studied for decades. But one obstacle faced by previous research was that some galaxies were too far away, or too faint, for any present-day telescopes to detect. This forced scientists to estimate the starlight produced by these distant galaxies rather than directly record it.

Ajello's team was able to circumvent this by using Fermi's Large Area Telescope data to analyze the extragalactic background light. Starlight that escapes galaxies, including the most distant ones, eventually becomes part of the EBL. Therefore, accurate measurements of this cosmic fog, which have only recently become possible, eliminated the need to estimate light emissions from ultra-distant galaxies.

Paliya performed the gamma ray analysis of all 739 blazars, whose black holes are millions to billions of times more massive than our sun.

"By using blazars at different distances from us, we measured the total starlight at different time periods," said Paliya of the department of physics and astronomy. "We measured the total starlight of each epoch - one billion years ago, two billion years ago, six billion years ago, etc. - all the way back to when stars were first formed. This allowed us to reconstruct the EBL and determine the star-formation history of the universe in a more effective manner than had been achieved before."

When high-energy gamma rays collide with low-energy visible light, they transform into pairs of electrons and positrons. According to NASA, Fermi's ability to detect gamma rays across a wide range of energies makes it uniquely suited for mapping the cosmic fog. These particle interactions occur over immense cosmic distances, which enabled Ajello's group to probe deeper than ever into the universe's star-forming productivity.

"Scientists have tried to measure the EBL for a long time. However, very bright foregrounds like the zodiacal light (which is light scattered by dust in the solar system) rendered this measurement very challenging," said co-author Abhishek Desai, a graduate research assistant in the department of physics and astronomy. "Our technique is insensitive to any foreground and thus overcame these difficulties all at once."

Star formation, which occurs when dense regions of molecular clouds collapse and form stars, peaked around 11 billion years ago. But though the birthing of new stars has since slowed down, it has never stopped. For instance, about seven new stars are created in our Milky Way galaxy every year.

Establishing not only the present-day EBL, but revealing its evolution in cosmic history is a major breakthrough in this field, according to team member Dieter Hartmann, a professor in the department of physics and astronomy.

"Star formation is a great cosmic cycling and recycling of energy, matter and metals. It's the motor of the universe," Hartmann said. "Without the evolution of stars, we wouldn't have the fundamental elements necessary for the existence of life."

Understanding star formation also has ramifications for other areas of astronomical study, including research regarding cosmic dust, galaxy evolution and dark matter. The team's analysis will provide future missions with a guideline to explore the earliest days of stellar evolution - such as the upcoming James Webb Space Telescope, which will be launched in 2021 and will enable scientists to hunt for the formation of primordial galaxies.

"The first billion years of our universe's history are a very interesting epoch that has not yet been probed by current satellites," Ajello concluded. "Our measurement allows us to peek inside it. Perhaps one day we will find a way to look all the way back to the Big Bang. This is our ultimate goal."


Related Links
Clemson University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
The quest for galactic relics from the primordial universe
Porto, Portugal (SPX) Nov 26, 2018
They are massive, they are very small, and they are extremely rare, but may hold the secrets of how galaxies form and evolve. A new study[1] lifts the tip of the veil over the timid life of the massive ultra-compact galaxies. It was published on the 16th of November in the journal Astronomy and Astrophysics and was carried out by an international team led by Fernando Buitrago, of Instituto de Astrofisica e Ciencias do Espaco (IA[2]) and Faculdade de Ciencias da Universidade de Lisboa (FCUL). Massi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
ISS Toilet Swarmed By 'Space Bugs' That Could Infect Astronauts - Research

Russia space agency targeted over "stolen" billions

NASA probes 'drug-free' policies, safety at SpaceX, Boeing

Robotic arm links cargo craft to International Space Station

TIME AND SPACE
SpaceX to carry more than 20 new experiments to ISS

Arianespace to launch Indian and Korean GEO satellites

Jan. 7 date set for first SpaceX unmanned capsule to International Space Station

Focus on Vega developments

TIME AND SPACE
Mars InSight lands on Red Planet

Marsquakes' Mission Successfully Lands On Red Planet

Mars Mole HP3 Arrives at the Red Planet

With InSight on Mars, Scientists Feel Earthly Relief, Get to Work

TIME AND SPACE
Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

TIME AND SPACE
Kleos Space signs channel partner agreement with IMSL

Airbus to build new generation broadcast satellites to renew Eutelsat HOTBIRD fleet

Goonhilly partners with Airbus, other industry leaders and academics in proposed SmartSat CRC to drive Australia's space sector

Space technology company to set up high-volume production of ultra-powerful LEO satellite platforms

TIME AND SPACE
South Korea to Buy Updated Missile Defense Radar Systems from Israel

New technique to make objects invisible proposed

Disordered materials could be hardest, most heat-tolerant carbides

How to melt gold at room temperature

TIME AND SPACE
New Climate Models of TRAPPIST-1's Seven Intriguing Worlds

Bacteria Likely to Soon Infect ISS Crew Found to Be Antibiotic-Resistant

Exoplanet mission launch slot announced

Oxygen could have been available to life as early as 3.5 billion years ago

TIME AND SPACE
The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning

Encouraging prospects for moon hunters

Evidence for ancient glaciation on Pluto

SwRI team makes breakthroughs studying Pluto orbiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.