. 24/7 Space News .
CARBON WORLDS
Cement materials are an overlooked and substantial carbon 'sink'
by Staff Writers
Norwich, UK (SPX) Nov 22, 2016


File image.

A new study involving the University of East Anglia (UEA) shows that cement structures are a substantial but overlooked absorber of carbon emissions - offsetting some of those emitted during cement production itself.

Conducted by the China Emission Accounts and Datasets (CEADs) group, an international team of researchers led by UEA's Prof Dabo Guan, it found that the natural carbonation process of cement materials represents a large and growing 'sink' of CO2. However, while the Intergovernmental Panel on Climate Change (IPCC) guidelines for emissions inventories provide methods for quantifying CO2 emissions during the cement production process, they do not consider carbon absorbed through cement carbonation.

Carbonation is a slow process that takes place throughout the life cycle of cement-based materials. As they weather, CO2 spreads into the pores and triggers a chemical reaction, starting at the surface and gradually moving inwards.

Using new data from field surveys in China and existing data and studies on cement material during its service life, demolition and secondary use of concrete waste, the researchers modelled the regional and global atmospheric CO2 uptake between 1930 and 2013.

The findings, published in the journal Nature Geoscience, indicate that existing cement stocks worldwide absorb approximately one billion tons of atmospheric CO2 each year. The researchers focused on four cement materials - concrete, mortar, construction cement waste and cement kiln dust - in China, the US, Europe and the rest of the world.

It is estimated that 4.5 gigatons of carbon (GtC) has been reabsorbed in carbonating cement material from 1930 to 2013, offsetting 43 per cent of the CO2 emissions from production of cement over the same period, not including emissions associated with fossil fuel use during cement production. An estimated 44 per cent of cement process emissions produced each year between 1980 and 2013 has been offset by the annual cement sink.

The process CO2 emissions from cement production make up approximately 90 per cent of global CO2 emissions from all industrial processes and five per cent of global CO2 emissions from industrial processes and burning fossil fuels combined.

Prof Guan, the study's lead UK author and a professor in climate change economics at UEA's School of International Development, said the overall size of the cement sink between 1930 and 2013 was significant for the global carbon cycle.

"Existing cement is a large and overlooked carbon sink and future emissions inventories and carbon budgets may be improved by including this," said Prof Guan. "Also, efforts to mitigate CO2 emissions should prioritise the reduction of fossil-fuel emissions over cement process emissions, given that produced cement entails creation of an associated carbon sink.

"We suggest that if carbon capture and storage technology were applied to cement process emissions, the produced cements might represent a source of negative CO2 emissions. Policymakers might also investigate ways to increase the completeness and rate of carbonation of cement waste, for example as a part of an enhanced weathering scheme, to further reduce the climate impacts of cement emissions."

Before 1982, the majority of CO2 capture occurred in Europe and the US, corresponding to the legacy carbon sink of cement building and infrastructure built during the 1940s and 1950s. Since 1994, cement materials used in China have absorbed more CO2 than the other regions combined, due to its rapidly increasing cement production.

Mortar cement captured the most carbon, even though only approximately 30 per cent of cement is used in mortar. This is because it is frequently applied in thin decorative layers to the exterior of building structures, with higher exposure surface areas to atmospheric CO2, and therefore a higher carbonation capacity.

Despite a relatively smaller exposure area, and therefore lower carbonation rate, concrete cement is the second largest contributor to the carbon sink because approximately 70 per cent of all produced cement is used in concrete.

The researchers also highlight the legacy effects of accumulating cement stocks. On average, between 2000 and 2013, 25 per cent of the carbon captured each year was absorbed by cement materials produced more than five years earlier and 14 per cent produced more than 10 years earlier.

Demolition causes an increase in carbonation rates by exposing large and fresh surfaces. Because the average 35-year service lifetime of structures in China is shorter than the average 65-70 years in the US and Europe, the turnover of cement with respect to carbonation has been increasing over time, accelerating the uptake of CO2.

Between 1990 and 2013 the annual carbon uptake has been increasing rapidly by an average of 5.8 per cent a year, as the stock of cement buildings and infrastructure increases, ages and gets demolished and disposed. This is slightly faster than process cement emissions over the same period, on average 5.4 per cent a year.

Given expected demolition, waste disposal, and reuse of cement materials from the large amount of concrete structures and infrastructure built in the past half-century, and the still-increasing cement consumption in China and other developing countries, the carbon sink of cement materials can therefore be anticipated to increase in the future. 'Substantial global carbon uptake by cement carbonation' is published in Nature Geoscience.

Research Report


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of East Anglia
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CARBON WORLDS
Storing carbon dioxide underground by turning it into rock
Washington DC (SPX) Nov 21, 2016
In November, the Paris Climate Agreement goes into effect to reduce global carbon emissions. To achieve the set targets, experts say capturing and storing carbon must be part of the solution. Several projects throughout the world are trying to make that happen. Now, a study on one of those endeavors, reported in the ACS journal Environmental Science and Technology Letters, has found that w ... read more


CARBON WORLDS
China sets patent filing record: UN

ESA astronaut Thomas Pesquet arrives at the International Space Station

Moscow to mull building Russian orbital station in Spring 2017

New crews announced for Space Station

CARBON WORLDS
Star One D1 arrives for heavy-lift Ariane 5 in Dec with 2 SSL-built satellites

SLS propulsion system goes into Marshall stand ahead of big test series

Predictive modeling for NASA's Entry, Descent, and Landing Missions

Arianespace doubles its Galileo delivery capacity with Ariane 5

CARBON WORLDS
ESA's new Mars orbiter prepares for first science

NASA field test focuses on science of lava terrains, like Early Mars

Can we grow potatoes on Mars

Dutch firm unveils concept space suit for Mars explorers

CARBON WORLDS
Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

CARBON WORLDS
Charyk helped chart the course of satellite communications

Intelsat and Intelsat General support hurricane Matthew recovery efforts

Boeing to consolidate defense and space sites

Can India beat China at its game with common satellite for South Asia

CARBON WORLDS
NASA microthrusters achieve success on ESA's LISA Pathfinder

Sweden orders new laser simulators from Saab

Calculations predict unexpected disorder in the surface of polar materials

New clues emerge in 30-year-old superconductor mystery

CARBON WORLDS
Scientists from the IAC discover a nearby 'superearth'

Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

CARBON WORLDS
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.