Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















PHYSICS NEWS
Cells adapt ultra-rapidly to zero gravity
by Staff Writers
Zurich, Switzerland (SPX) Mar 01, 2017


Front plate of the experiment equipment is shown. Image courtesy C. Thiel und Airbus DS.

Mammalian cells are optimally adapted to gravity. But what happens in the microgravity environment of space if the earth's pull disappears? Previously, many experiments exhibited cell changes - after hours or even days in zero gravity. Astronauts, however, returned to Earth without any severe health problems after long missions in space, which begs the question as to how capable cells are of adapting to changes in gravity.

Based on real-time readings on the ISS, UZH scientists can now reveal that cells are able to respond to changes in gravitational conditions extremely quickly and keep on functioning. Therefore, the study also provides direct evidence that certain cell functions are linked to gravity.

Test setup and measurement on the ISS
In contrast to space experiments, where analyses are conducted afterwards on Earth, the team headed by UZH scientists Oliver Ullrich and Cora Thiel opted for a different path.

They geared their experimental design towards conducting direct measurements in space: From thawing the test cells to the measurements themselves, ESA astronaut Samantha Cristoforetti performed all the operations directly in the lab on the ISS. The data gathered on the space station was then transmitted to Earth. Rigorous internal and external controls excluded any influence other than gravity.

Cell adaptation in 42 seconds
The research team used the so-called oxidative burst - an old evolutionary mechanism to kill off bacteria via defense cells - to study how rat cells responded to changes in gravity. With the aid of centrifuges, Cristoforetti altered the gravitational conditions on the ISS, which enabled the team in the control center to track how the cells reacted. "Ultra-rapidly," explains Oliver Ullrich, a professor from the Institute of Anatomy at the University of Zurich.

"Although the immune defense collapsed as soon as zero gravity hit, to our surprise the defense cells made a full recovery within 42 seconds." For Ullrich and Thiel, the direct evidence of a rapid and complete adaptation to zero gravity in less than a minute begs the question as to whether previous cell changes measured after hours or days were also the result of an adaptation process.

Good news for astronauts
"It seems paradoxical," says Thiel: "Cells are able to adapt ultra-rapidly to zero gravity. However, they were never exposed to it in the evolution of life on Earth. Therefore, the results raise more questions regarding the robustness of life and its astonishing adaptability."

In any case, as far as Ullrich is concerned the result of the ISS experiment is good news for manned space flight: "There's hope that our cells are able to cope much better with zero gravity than we previously thought."

Space experiment
The research material used by Professor Ullrich and Doctor Thiel was transported to the ISS on the SpaceX-CRS-6 mission by a Falcon 9 rocket and the Dragon space station on April 14, 2015. The research mission was funded by the European Space Agency (ESA) and the German Aerospace Center (DLR).

After years of preparation, the ESA astronaut Samantha Cristoforetti conducted the experiments in the BIOLAB of the COLUMBUS Module on the ISS. The University of Zurich headed the experiment in collaboration with Otto-von-Guericke-University Magdeburg, the Technical University of Munich, Lucerne University of Applied Sciences and Arts, the European Space Agency (ESA), the German Aerospace Center (DLR) and NASA's Kennedy Space Center.

Cora S. Thiel, Diane de Zelicourt, Svantje Tauber, Astrid Adrian, Markus Franz, Dana M. Simmet, Kathrin Schoppmann, Swantje Hauschild, Sonja Krammer, Miriam Christen, Gesine Bradacs, Katrin Paulsen, Susanne A. Wolf, Markus Braun, Jason Hatton, Vartan Kurtcuoglu, Stefanie Franke, Samuel Tanner, Samantha Cristoforetti, Beate Sick, Bertold Hock and Oliver Ullrich. Rapid adaptation to microgravity in mammalian macrophage cells. Scientific Reports 7, Article number: 43 (2017). February 27, 2017. DOI: 10.1038/s41598-017-00119-6

PHYSICS NEWS
'Gravitational noise' interferes with determining distant sources
Moscow, Russia (SPX) Feb 22, 2017
Our Galaxy's gravitational field limits the accuracy of astrometric observations of distant objects. This is most clearly appeared for objects that are visually located behind the central regions of the Galaxy and the Galactic plane, where the deviation can be up to several dozen microarcseconds. And, more importantly, the effect of this gravitational "noise" cannot be removed. This means ... read more

Related Links
University of Zurich
The Physics of Time and Space

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
India has capability to develop space station, says top official

Orion spacecraft achieves key safety milestone

Marshall shakes, packs, ships and tracks NASA payloads

NASA and SpaceX gives ASU a competitive edge in technological innovation

PHYSICS NEWS
Elon Musk: tech dreamer reaching for sun, moon and stars

SpaceX says it will fly civilians to the moon next year

ULA launches NROL-79 payload for NRO

Moon tourists risk rough ride, experts say

PHYSICS NEWS
Martian Winds Carve Mountains, Move Dust, Raise Dust

NASA Orbiter Steers Clear of Mars Moon Phobos

Science checkout continues for ExoMars orbiter

Remnants of a mega-flood on Mars

PHYSICS NEWS
China to launch space station core module in 2018

Thinking Big: China Hopes to Conduct 2nd Mission to Mars by 2030

China to Conduct Test Flight of CZ-8 Carrier Rocket by 2018

China to launch first high-throughput communications satellite in April

PHYSICS NEWS
Turkey Moves Closer to Launching Own Space Agency

OneWeb, Intelsat merge to advance satellite internet

GomSpace to supply satellites for Sky and Space Global constellation

Kacific places order with Boeing for a high throughput satellite

PHYSICS NEWS
NYU researchers coax colloidal spheres to self-assemble into photonic crystals

Sustainable ceramics without a kiln

Scientists demonstrate improved particle warning to protect astronauts

When Rocket Science Meets X-ray Science

PHYSICS NEWS
Volcanic hydrogen spurs chances of finding exoplanet life

Evidence of Star Wars-like Planetary System

The missing link in how planets form

Hunting for giant planet analogs in our own backyard

PHYSICS NEWS
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement