. 24/7 Space News .
TIME AND SPACE
Captured electrons excite nuclei to higher energy states
by Staff Writers
Lemont IL (SPX) Feb 15, 2018

Argonne scientists and collaborators used the Gammasphere, this powerful gamma ray spectrometer, to help create the right conditions to cause and spot a long-theorized effect called nuclear excitation by electron capture. Image courtesy Argonne National Laboratory.

For the first time, physicists from the U.S. Department of Energy's (DOE) Argonne National Laboratory and their collaborators, led by a team from the U.S. Army Research Laboratory, demonstrated a long-theorized nuclear effect. This advance tests theoretical models that describe how nuclear and atomic realms interact and may also provide new insights into how star elements are created.

Physicists first predicted the effect, called nuclear excitation by electron capture (NEEC), over 40 years ago. But scientists had not seen it until now. Using the Argonne Tandem Linac Accelerator System (ATLAS), and Gammasphere, a powerful gamma ray spectrometer, the researchers created the right conditions to cause and spot the behavior.

"We were able to identify around 500 gamma rays that were emitted during the decay of 93Mo that wouldn't have been released if it weren't for NEEC." - Mike Carpenter, group leader at Argonne in charge of Gammasphere

The NEEC effect occurs when a charged atom captures an electron, giving the atom's nucleus enough energy to jump to a higher excited state.

An excited nucleus stays in each energy state for a while before decaying into the state below it, shedding energy in the form of gamma rays. These excited states typically last for much less than a billionth of a second, but in some rare cases, they can live far longer, even for millions of times the age of the universe.

The longer-lived energy states are called isomers, and to observe the NEEC effect, the researchers produced an isomer with a half-life of about seven hours. In other words, after seven hours of existing in the isomeric energy level, about half of the nuclei of this type will decay.

The scientists chose to produce this nucleus, called 93Mo, an isotope of molybdenum, because of its unique arrangement of energy levels.

"There is an allowed energy level not far above the isomer state," said the Army Research Laboratory's Chris Chiara, the study's lead scientist.

"Under normal circumstances, the isomer will decay naturally after about seven hours, but if NEEC occurs, the nucleus is excited out of the isomer to the slightly higher state. That state then quickly decays to a state below the isomer, emitting gamma rays that have distinct energies that we can look for."

To make 93Mo, the researchers used ATLAS, a DOE Office of Science User Facility, to accelerate a beam of ions towards the atoms in a target foil where the nuclei of the two fused together. These reactions formed 93Mo in a highly excited state at the center of Gammasphere, which waited to detect evidence of the effect in the form of gamma rays.

As the 93Mo atoms move through the target material, they bump into atoms that slow them down and strip them of electrons, putting them in a high-charge state. Electrons from the target atoms then fill those vacancies in the 93Mo, and if the electrons have the right energy before the capture, they may excite the nucleus into the next highest state. When this state decays, the nucleus releases a gamma ray that can be traced back to the NEEC reaction.

The target, made by ATLAS's in-house target maker, John Greene, played a crucial role in the detection of NEEC. Greene was able to work on the fly, tweaking the target as the scientists learned more about the 93Mo nucleus. With everything in place, the team began to gather data.

"We detected gamma rays from these reactions over the course of the three-day experiment, and we accumulated around eight billion events in total," said Mike Carpenter, a group leader at Argonne in charge of Gammasphere.

"From these events, we were able to identify around 500 gamma rays that were emitted during the decay of 93Mo that wouldn't have been released if it weren't for NEEC."

The power and sensitivity of Gammasphere was vital to the experiment's success.

"We made use of a new digital Gammasphere mode, which allowed us to run at a rate about five times higher than would have been possible with the older analog system," said Chiara. But it was not only the hardware at ATLAS that was important.

"As experts in the field of gamma-ray spectroscopy, the Argonne staff provided invaluable scientific and technical support," he added.

The team's success may lead to advances in astronomy and cosmology as it could improve the accuracy of models scientists use to gauge how stars form. The quantities of elements in a star depend largely on the structure and behavior of nuclei.

Over long periods, and with vast numbers of atoms interacting, the survival - or destruction - of specific isomers can have a cumulative influence. Taking the NEEC effect into account could improve our understanding of what stars are made of and how they evolve.

Scientists at the Army Research Laboratory are also interested in possible future applications for the controlled release of nuclear energy from isomers via the NEEC effect. If scientists and engineers could harness this energy, it might help develop power sources with 100,000 times greater energy per unit mass than chemical batteries.

The results of the experiment were published in a paper titled "Isomer depletion as experimental evidence of nuclear excitation by electron capture," on February 8 in Nature.


Related Links
Argonne National Laboratory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Scientists make first direct observation of electron frolic
Tokyo, Japan (SPX) Feb 15, 2018
The shower of electrons bouncing across Earth's magnetosphere - commonly known as the Northern Lights - has been directly observed for the first time by an international team of scientists. While the cause of these colorful auroras has long been hypothesized, researchers had never directly observed the underlying mechanism until now. The spectacle of these subatomic showers is legendary. Green, red, and purple waltz across the night sky, blending into one another for a fantastic show widely consid ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Trump's Privatized ISS 'Not Impossible,' but Would Require 'Renegotiation'

Russian Resupply Ship Delivers Three Tons of Cargo

NASA's Continued Focus on Returning U.S. Human Spaceflight Launches

Holograms and mermaids: Top trends at Nuremberg toy fair

TIME AND SPACE
Russia launches cargo spacecraft after aborted liftoff

Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

Elon Musk, visionary Tesla and SpaceX founder

TIME AND SPACE
Mars Rover Opportunity Reaches 5000 Sols On Mars

Oppy Takes A Selfie To Mark Sol 5000

A Piece of Mars is Going Home

Danish architect envisions life on Mars

TIME AND SPACE
Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

TIME AND SPACE
Airbus and human spaceflight: from Spacelab to Orion

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

UK companies seek cooperation with Russia in space technologies

TIME AND SPACE
University Holds Tenth Annual Space Horizons Workshop

Tricking photons leads to first-of-its-kind laser breakthrough

Self-Driving Servicer Now Baselined for NASA's Restore-L Satellite-Servicing Demonstration

Navy turns to Raytheon for aircraft sensor upgrades

TIME AND SPACE
Kepler Scientists Discover Almost 100 New Exoplanets

Deep-sea fish use hydrothermal vents to incubate eggs

'Oumuamua has been tumbling about the galaxy for a billion years

UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

TIME AND SPACE
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.