Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Camera chip provides superfine 3-D resolution
by Staff Writers
Pasadena CA (SPX) Apr 08, 2015


The micrometer-resolution image, taken from roughly half a meter (1.5 feet) away, shows the height of a US penny at various points. Image courtesy Ali Hajimiri/Caltech. For a larger version of this image please go here.

Imagine you need to have an almost exact copy of an object. Now imagine that you can just pull your smartphone out of your pocket, take a snapshot with its integrated 3-D imager, send it to your 3-D printer, and within minutes you have reproduced a replica accurate to within microns of the original object. This feat may soon be possible because of a tiny new, tiny high-resolution 3-D imager developed at Caltech.

Any time you want to make an exact copy of an object with a 3-D printer, the first step is to produce a high-resolution scan of the object with a 3-D camera that measures its height, width, and depth. Such 3-D imaging has been around for decades, but the most sensitive systems generally are too large and expensive to be used in consumer applications.

A cheap, compact yet highly accurate new device known as a nanophotonic coherent imager (NCI) promises to change that. Using an inexpensive silicon chip less than a millimeter square in size, the NCI provides the highest depth-measurement accuracy of any such nanophotonic 3-D imaging device.

The work, done in the laboratory of Ali Hajimiri, the Thomas G. Myers Professor of Electrical Engineering in the Division of Engineering and Applied Science, is described in the February 2015 issue of Optics Express.

In a regular camera, each pixel represents the intensity of the light received from a specific point in the image, which could be near or far from the camera - meaning that the pixels provide no information about the relative distance of the object from the camera. In contrast, each pixel in an image created by the Caltech team's NCI provides both the distance and intensity information.

"Each pixel on the chip is an independent interferometer - an instrument that uses the interference of light waves to make precise measurements - which detects the phase and frequency of the signal in addition to the intensity," says Hajimiri.

The new chip utilizes an established detection and ranging technology called LIDAR, in which a target object is illuminated with scanning laser beams. The light that reflects off of the object is then analyzed based on the wavelength of the laser light used, and the LIDAR can gather information about the object's size and its distance from the laser to create an image of its surroundings.

"By having an array of tiny LIDARs on our coherent imager, we can simultaneously image different parts of an object or a scene without the need for any mechanical movements within the imager," Hajimiri says.

Such high-resolution images and information provided by the NCI are made possible because of an optical concept known as coherence. If two light waves are coherent, the waves have the same frequency, and the peaks and troughs of light waves are exactly aligned with one another. In the NCI, the object is illuminated with this coherent light.

The light that is reflected off of the object is then picked up by on-chip detectors, called grating couplers, that serve as "pixels," as the light detected from each coupler represents one pixel on the 3-D image. On the NCI chip, the phase, frequency, and intensity of the reflected light from different points on the object is detected and used to determine the exact distance of the target point.

Because the coherent light has a consistent frequency and wavelength, it is used as a reference with which to measure the differences in the reflected light. In this way, the NCI uses the coherent light as sort of a very precise ruler to measure the size of the object and the distance of each point on the object from the camera. The light is then converted into an electrical signal that contains intensity and distance information for each pixel - all of the information needed to create a 3-D image.

The incorporation of coherent light not only allows 3-D imaging with the highest level of depth-measurement accuracy ever achieved in silicon photonics, it also makes it possible for the device to fit in a very small size. "By coupling, confining, and processing the reflected light in small pipes on a silicon chip, we were able to scale each LIDAR element down to just a couple of hundred microns in size - small enough that we can form an array of 16 of these coherent detectors on an active area of 300 microns by 300 microns," Hajimiri says.

The first proof of concept of the NCI has only 16 coherent pixels, meaning that the 3-D images it produces can only be 16 pixels at any given instance. However, the researchers also developed a method for imaging larger objects by first imaging a four-pixel-by-four-pixel section, then moving the object in four-pixel increments to image the next section. With this method, the team used the device to scan and create a 3-D image of the "hills and valleys" on the front face of a U.S. penny - with micron-level resolution - from half a meter away.

In the future, Hajimiri says, that the current array of 16 pixels could also be easily scaled up to hundreds of thousands. One day, by creating such vast arrays of these tiny LIDARs, the imager could be applied to a broad range of applications from very precise 3-D scanning and printing to helping driverless cars avoid collisions to improving motion sensitivity in superfine human machine interfaces, where the slightest movements of a patient's eyes and the most minute changes in a patient's heartbeat can be detected on the fly.

"The small size and high quality of this new chip-based imager will result in significant cost reductions, which will enable thousands new of uses for such systems by incorporating them into personal devices such as smartphones," he says.

The study was published in a paper titled, "Nanophotonic coherent imager." In addition to Hajimiri, other Caltech coauthors include former postdoctoral scholar and current assistant professor at the University of Pennsylvania, Firooz Aflatouni, graduate student Behrooz Abiri, and Angad Rekhi (BS '14). This work was partially funded by Caltech Innovation Initiative.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
California Institute of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
A call to change recycling standards as 3-D printing expands
Houghton MI (SPX) Mar 19, 2015
The 3-D printing revolution has changed the way we think about plastics. Everything from children's toys to office supplies to high-value laboratory equipment can be printed. The potential savings of producing goods at the household- and lab-scale is remarkable, especially when producers use old prints and recycle them. Buying plastic filament for printing can be expensive, says Joshua Pea ... read more


TECH SPACE
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

TECH SPACE
Rover Amnesia Event Follows Latest Memory Reformatting

Ancient Martian lake system records 2 water-related events

Curiosity Rover Finds Biologically Useful Nitrogen on Mars

NASA's Opportunity Mars Rover Passes Marathon Distance

TECH SPACE
NASA Announces New Partnerships with Industry for Deep-Space Skills

A Year in Space

Russia to Consider Training First Guatemalan Cosmonaut

Russia, US to Jointly Prepare Mars, Moon Flight Road Map

TECH SPACE
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

TECH SPACE
Cosmonauts Take Tablet Computer Into Space

Russia announces plan to build new space station with NASA

Soyuz spacecraft docks at ISS for year-long mission

One-Year Crew Set for Launch to Space Station

TECH SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

Russia Launches Satan Missile With S Korean Kompsat 3A Satellite

TECH SPACE
Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

TECH SPACE
Study reveals novel technique for handling molecules

Twisted nanofibers create structures tougher than bulletproof vests

A method to simplify pictures makes chemistry calculations a snap

Metals used in high-tech products face future supply risks




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.