. 24/7 Space News .
TECH SPACE
Camera can watch moving objects around corners
by Staff Writers
Stanford CA (SPX) Jul 31, 2019

Objects - including books, a stuffed animal and a disco ball - in and around a bookshelf tested the system's versatility in capturing light from different surfaces in a large-scale scene.

David Lindell, a graduate student in electrical engineering at Stanford University, donned a high visibility tracksuit and got to work, stretching, pacing and hopping across an empty room. Through a camera aimed away from Lindell - at what appeared to be a blank wall - his colleagues could watch his every move.

That's because, hidden to the naked eye, he was being scanned by a high powered laser and the single particles of light he reflected onto the walls around him were captured and reconstructed by the camera's advanced sensors and processing algorithm.

"People talk about building a camera that can see as well as humans for applications such as autonomous cars and robots, but we want to build systems that go well beyond that," said Gordon Wetzstein, an assistant professor of electrical engineering at Stanford. "We want to see things in 3D, around corners and beyond the visible light spectrum."

The camera system Lindell tested, which the researchers are presenting at the SIGGRAPH 2019 conference Aug. 1, builds upon previous around-the-corner cameras this team developed. It's able to capture more light from a greater variety of surfaces, see wider and farther away and is fast enough to monitor out-of-sight movement - such as Lindell's calisthenics - for the first time. Someday, the researchers hope superhuman vision systems could help autonomous cars and robots operate even more safely than they would with human guidance.

Practicality and seismology
Keeping their system practical is a high priority for these researchers. The hardware they chose, the scanning and image processing speeds, and the style of imaging are already common in autonomous car vision systems. Previous systems for viewing scenes outside a camera's line of sight relied on objects that either reflect light evenly or strongly. But real-world objects, including shiny cars, fall outside these categories, so this system can handle light bouncing off a range of surfaces, including disco balls, books and intricately textured statues.

Central to their advance was a laser 10,000 times more powerful than what they were using a year ago. The laser scans a wall opposite the scene of interest and that light bounces off the wall, hits the objects in the scene, bounces back to the wall and to the camera sensors. By the time the laser light reaches the camera only specks remain, but the sensor captures every one, sending it along to a highly efficient algorithm, also developed by this team, that untangles these echoes of light to decipher the hidden tableau.

"When you're watching the laser scanning it out, you don't see anything," described Lindell. "With this hardware, we can basically slow down time and reveal these tracks of light. It almost looks like magic."

The system can scan at four frames per second. It can reconstruct a scene at speeds of 60 frames per second on a computer with a graphics processing unit, which enhances graphics processing capabilities.

To advance their algorithm, the team looked to other fields for inspiration. The researchers were particularly drawn to seismic imaging systems - which bounce sound waves off underground layers of Earth to learn what's beneath the surface - and reconfigured their algorithm to likewise interpret bouncing light as waves emanating from the hidden objects. The result was the same high-speed and low memory usage with improvements in their abilities to see large scenes containing various materials.

"There are many ideas being used in other spaces - seismology, imaging with satellites, synthetic aperture radar - that are applicable to looking around corners," said Matthew O'Toole, an assistant professor at Carnegie Mellon University who was previously a postdoctoral fellow in Wetzstein's lab. "We're trying to take a little bit from these fields and we'll hopefully be able to give something back to them at some point."

Humble steps
Being able to see real-time movement from otherwise invisible light bounced around a corner was a thrilling moment for this team but a practical system for autonomous cars or robots will require further enhancements.

"It's very humble steps. The movement still looks low-resolution and it's not super-fast but compared to the state-of-the-art last year it is a significant improvement," said Wetzstein. "We were blown away the first time we saw these results because we've captured data that nobody's seen before."

The team hopes to move toward testing their system on autonomous research cars, while looking into other possible applications, such as medical imaging that can see through tissues. Among other improvements to speed and resolution, they'll also work at making their system even more versatile to address challenging visual conditions that drivers encounter, such as fog, rain, sandstorms and snow.

Research paper


Related Links
Stanford University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Lockheed contracted by Northrop Grumman for E-2D Hawkeye radars
Washington (UPI) Jul 25, 2019
Lockheed Martin has been contracted to produce APY-9 radars for the U.S. Navy's E-2D Advanced Hawkeye airborne early warning surveillance aircraft. The company is due to provide Northrop Grumman, manufacturer of the E-2D, 24 additional APY-9 radars for the aircraft over the next five years under a $600 million deal announced by Lockheed on Thursday. The deal follows a contract award in April for 24 more E-2D aircraft for the U.S. Navy. The ultra high frequency surveillance radar is desig ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
French inventor to hover across English Channel on 'flyboard'

US spacecraft's solar sail successfully deploys

Indigenous Congo foragers learn early to use sun for orientation

Japan's Noguchi to Be 1st Foreign Astronaut to Join New US Spacecraft Crew for ISS Mission

TECH SPACE
3D printing transforms rocketry in Florida

Raytheon, DARPA complete design review for hypersonic weapon

SpaceX cargo launch to space station now targeting Wednesday

Apollo's legacy: A quiet corner of Alabama that is forever Germany

TECH SPACE
Europe prepares for Mars courier

Fueling of NASA's Mars 2020 rover power system begins

ExoMars radio science instrument readied for Red Planet

Mars 2020 Rover: T-Minus One Year and Counting

TECH SPACE
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

TECH SPACE
Communications satellite firm OneWeb plans to start monthly launches in December

OneWeb and Airbus start up world's first high-volume satellite production facility in Florida

Why isn't Australia in deep space?

Maintaining large-scale satellite constellations using logistics approach

TECH SPACE
Lockheed contracted by Northrop Grumman for E-2D Hawkeye radars

Finding alternatives to diamonds for drilling

Electronic chip mimics the brain to make memories in a flash

First of Two Van Allen Probes Spacecraft Ceases Operations

TECH SPACE
ELSI scientists discover new chemistry that may help explain the origins of cellular life

Scientists deepen understanding of magnetic fields surrounding Earth and other planets

Super salty, subzero Arctic water provides peek at possible life on other planets

Astronomers expand cosmic "cheat sheet" in hunt for life

TECH SPACE
Jupiter's auroras powered by alternating current

Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.