. 24/7 Space News .
CARBON WORLDS
CO2 mineralization in geologically common rocks for carbon storage
by Staff Writers
Fukuoka, Japan (SPX) Mar 11, 2019

The red color denotes that the occurrence probability of valence electrons is 100 percent, the blue color means that no electrons exist in the area, and the green color means free electron-gas indicating the border of covalent bonds. Red, blue and brown balls represent oxygen, silicon and carbon atoms, respectively.

Humanity needs to improve when it comes to reducing carbon emissions to prevent the worst effects of climate change. If the world is to meet the IPCC's minimum target of keeping global temperature increases below 1.5C, every possible avenue for CO2 remediation must be explored.

Geological trapping can play a major role here. Our planet's underground rocks and sediments offer a vast potential space for long-term carbon storage. To support this, a recent computational study from a Japanese-led international group at Kyushu University shows how trapped carbon dioxide can be converted into harmless minerals.

The rocks beneath the earth's surface are highly porous, and trapping involves injecting CO2 into the pores after collecting it from its emission source. Although CO2 is usually considered too stable to react chemically with rock, it can bind tightly to the surface by physical adsorption. Eventually it dissolves in water, forming carbonic acid, which can react with aqueous metals to form carbonate minerals.

"Mineralization is the most stable method of long-term CO2 storage, locking CO2 into a completely secure form that can't be re-emitted," explains Jihui Jia of the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, first author of the study. "This was once thought to take thousands of years, but that view is rapidly changing. The chemical reactions are not fully understood because they're so hard to reproduce in the lab. This is where modeling comes in."

As reported in The Journal of Physical Chemistry C, simulations were initially run to predict what happens when carbon dioxide collides with a cleaved quartz surface--quartz (SiO2) being abundant in the earth's crust. When the simulation trajectories were played back, the CO2 molecules were seen bending from their linear O=C=O shape to form trigonal CO3 units bonded with the quartz.

In a second round of simulations, H2O molecules were added to mimic the "formation water" that is often present beneath oil and gas drilling sites. Intriguingly, the H2O molecules spontaneously attacked the reactive CO3 structures, breaking the Si-O bonds to produce carbonate ions. Just like carbonic acid, carbonate ions can react with dissolved metal cations (such as Mg2+, Ca2+, and Fe2+) to bind carbon permanently into mineral form.

Together, the simulations show that both steps of CO2 mineralization--carbonation (binding to rock) and hydrolysis (reacting with water)--are favorable. Moreover, free carbonate ions can be made by hydrolysis, not just by dissociation of carbonic acid as was once assumed. These insights relied on a sophisticated form of molecular dynamics that models not just the physical collisions between atoms, but electron transfer, the essence of chemistry.

"Our results suggest some ways to improve geological trapping," says study lead author Takeshi Tsuji.

"For quartz to capture CO2, it must be a cleaved surface, so the silicon and oxygen atoms have reactive 'dangling' bonds. In real life, however, the surface might be protected by hydrogen bonding and cations, which would prevent mineralization. We need a way to strip off those cations or dehydrogenate the surface."

Evidence is growing that captured CO2 can mineralize much faster than previously believed. While this is exciting, the Kyushu paper underlines how complex and delicate the chemistry can be. For now, the group recommends further studies on other abundant rocks, like basalt, to map out the role that geochemical trapping can play in the greatest technical challenge facing civilization.

Research Report: "Ab Initio Molecular Dynamics Study of Carbonation and Hydrolysis Reactions on Cleaved Quartz (001) Surface"


Related Links
Kyushu University, I2CNER
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Diving into Earth's interior helps scientists unravel secrets of diamond formation
Bristol UK (SPX) Feb 27, 2019
It's the reason why the Earth has a clement stable climate and a low carbon dioxide atmosphere compared to that of Venus, for instance, which is in a runaway greenhouse state with high surface temperatures and a thick carbon dioxide atmosphere. One major difference between Earth and Venus is the existence of active plate tectonics on Earth, which make our environment unique within our solar system. But the atmosphere, oceans, and Earth's crust are only part of the story. The mantle, which re ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
The First Humans in Space

New Moon-Mars mission in progress at HI-SEAS habitat

NASA, Roscosmos reach consensus on Dragon unmanned flight to ISS

Russia to Invest Over $450,000 in Development of Backpack Vacuum Cleaner for ISS

CARBON WORLDS
N. Korea rocket site appears 'operational' again: US experts

D-orbit signs framework agreement with Firefly to acquire launch capacity

Raytheon awarded $63.3M for hypersonic weapons system research

Corvid wins $223.2M deal to help build suborbital flight vehicles

CARBON WORLDS
Simulated extravehicular activity science operations for Mars exploration

Mars InSight Lander's 'Mole' Pauses Digging

UCF research laying groundwork for off-world colonies

InSight's "Mole" Starts Hammering into the Martian Soil

CARBON WORLDS
China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

CARBON WORLDS
ESA approves SMILE mission with the Chinese Academy of Sciences

OneWeb Makes History as First Launch Mission Is a Success

2Operate and GomSpace to boost constellation management with AI

Historic investments in Canada's space program to create jobs and new industries

CARBON WORLDS
Matrix could ensure vital copper supplies

Nanotechnology and sunlight clear the way for better visibility

Electrically-heated silicate glass appears to defy Joule's first law

It's all in the twist: Physicists stack 2D materials at angles to trap particles

CARBON WORLDS
Kepler's First Exoplanet Candidate Confirmed, 10 Years After Launch

The case of the over-tilting exoplanets

Exiled planet linked to stellar flyby 3 million years ago

NASA-funded research creates DNA-like molecule to aid search for alien life

CARBON WORLDS
SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

Astronomers Optimistic About Planet Nine's Existence

New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule

Tiny Neptune Moon Spotted by Hubble May Have Broken from Larger Moon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.