Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















CHIP TECH
Bushwhacking into Unexplored Transistor Territories
by Staff Writers
Washington DC (SPX) Mar 17, 2017


The illustration suggests the range of material- and structure-based innovations that participants in the DREaM program might pursue as they seek next-generation electronic technologies. For a larger version of this image please go here.

Since the advent of microelectronics in the mid-20th century, humanity has been on a nonstop sprint to eke more speed, power efficiency, and computational power from the sextillions (1021) of ever more miniaturized transistors that have come to underlie so much of the modern technoscape.

Even so, the materials scientists, electrical engineers, and other specialists who are leading this decades-long advance know that astounding technological opportunities abound within both existing and yet-to-be-imagined semiconductor structures. When it comes to transistors that generate and receive radiofrequency (RF) and millimeter-wave signals-which are central in defense-relevant domains such as communications, signals intelligence, and electronic warfare-DARPA's new Dynamic Range-enhanced Electronics and Materials (DREaM) program is designed to provide openings to these path-breaking advances.

"The same basic transistor types have been dominant since their invention and we have been engineering the heck out of them for 50 years," said Dan Green, a program manager in DARPA's Microsystems Technology Office (MTO) and the overseer of the DREaM program. "We've gotten a lot out of that approach, but the focus on so few types of transistor technologies and just a few semiconductor materials also has fundamentally limited us in the RF world. With DREaM, we want to rethink all of that and imagine new possibilities."

The time for such rethinking indeed is now. An already enormous and exponentially growing cacophony of RF and millimeter-wave signals (shorter-wavelength and higher-frequency signals than those in the RF range) from civilian and military gadgetry, including everyday smartphones, long-range radars, and frequency-hopping RF jammers, is threatening to overcrowd the electromagnetic (EM) environment.

As the Internet of Things and its billions of wirelessly communicating devices (UAVs, home appliances, and military and household sensors, for example) emerge, the RF and millimeter-wave environment will become even more complex, noisy, and challenging to use. Transistors with unprecedented performance, especially in frequencies important for wireless communication, could become important parts of the solution to these challenges.

Green is drawing strength from DARPA's long history of innovation in semiconductor technology. Over the past, quarter century, Agency programs have laid down foundations for transistor technology based on the semiconductor materials gallium arsenide (GaAs) and gallium nitride (GaN), for example.

Compared to silicon-based technology, the backbone substance of the microelectronics revolution, GaAs circuitry operates at the higher frequencies and signal amplification powers that have made practical a world connected by palm-sized cell phones. GaN circuitry can operate at yet higher powers and frequencies and have given the U.S. military an edge in electronic warfare by enabling its radars and jammers to work at greater distances than its adversaries' corresponding technologies can.

The strategic challenge for researchers who become part of the DREaM program, Green noted, will be to rail against the seemingly inescapable performance tradeoffs between four key characteristics of RF transistors: 1) signal power, which determines an RF system's range of operation, 2) power efficiency, which determines the size and weight of the power system required to run them, 3) the range of frequencies (bandwidth) in which the transistors work, 4) and the system's so-called linearity, a measure of the fidelity at which a receiver can amplify signals, including weak ones that otherwise would get lost in the cocktail party of signals that a receiver's amplifier is likely to process in a battlespace.

The DREaM program is all about reducing the traditional limitations of this "trade space," as Green refers to it, so that engineers will be able to design smaller, less power-needy RF systems that nonetheless operate at larger electromagnetic bandwidths with unprecedented linearity.

Said Green, "Our goal is that DREaM transistors will transmit and receive the large and complex RF signals of the future and they will do so in smaller packages while consuming minimal power."

To achieve these technical goals with the DREaM program, Green hopes to push transistor technology futureward along two mutually reinforcing directions. One centers on new materials that can accommodate more electrical charge and voltage without degrading than can currently known materials. Advances on this materials front could open the way to the higher-power and more capable transistors Green seeks to develop with the DREaM program.

Ultrawide bandgap materials (UWB) such as complex oxides, which include gadolinium titanate and strontium titanate, and even particular crystal variants of GaN, are among the many possible candidates for research in this area.

Researchers engaging in the second technical area, which focuses on the linearity of transistor behavior over wide ranges of signal frequencies, will investigate unconventional transistor structures, among them nonplanar and filamentous ones, such as ones based on carbon nanotubes, as well as still-to-be-imagined geometries and layouts that are not constrained by the row-and-column transistor formats of today's integrated circuits.

DARPA will host a Proposers Day in support of the DREaM program from 9:00 AM to 1:00 PM EDT on March 29, 2017, at the Hilton in Arlington, VA. Advanced registration is required with a deadline of 5:00 PM EDT on March 27. More information about the Proposers Day is available in a Special Notice (DARPA-SN-17-24) posted on fbo.gov. The DREaM program's Broad Agency Announcement (HR001117S0024), which will more fully detail the technical goals and performer requirements, is expected to be released and posted on fbo.gov prior to the Proposers Day.

CHIP TECH
Bonding chips using inkjet printers
Washington DC (SPX) Mar 15, 2017
Today in electronics there are two main approaches to building circuits: the rigid one (silicon circuits) and the new, more appealing, flexible one based on paper and polymeric substrates that can be combined with 3-D printing. To date, chips are used to reach the reliable and high electrical performance needed for sophisticated specialized functions. However, for higher complexity systems ... read more

Related Links
Defense Advanced Research Projects Agency
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Russia to Build First New-Generation 'Federation' Spacecraft by 2021

Two more spacewalks for Thomas Pesquet

Trump's budget would cut NASA asteroid mission, earth science

Aiming Higher: High School Students Build Flight Hardware Bound for Space

CHIP TECH
SpaceX cargo ship returns to Earth

N. Korea's Kim hails engine test as 'new birth' for rocket industry

SpaceX launches EchoStar XXIII comms satellite into orbit

US BE-4 Rocket Engines to Replace Russian RD-180 on Atlas Carrier Rockets

CHIP TECH
Does Mars Have Rings? Not Right Now, But Maybe One Day

ExoMars: science checkout completed and aerobraking begins

Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

Opportunity Driving South to Gully

CHIP TECH
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

CHIP TECH
Globalsat Sky and Space Global sign MoU for testing and offering satellite service in Latin America

A Consolidated Intelsat and OneWeb

UK funding space entrepreneurs

Kymeta and Intelsat announce new service to revolutionize how satellite services are purchased

CHIP TECH
Why water splashes: New theory reveals secrets

Pulverizing electronic waste is green, clean - and cold

Molecular 'treasure maps' to help discover new materials

Researchers use light to remotely control curvature of plastics

CHIP TECH
Fossil or inorganic structure? Scientists dig into early life forms

Gigantic Jupiter-type planet reveals insights into how planets evolve

Operation of ancient biological clock uncovered

Visualizing debris disk "roller derby" to understand planetary system evolution

CHIP TECH
ESA's Jupiter mission moves off the drawing board

NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution

Juno to remain in current orbit at Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement