. 24/7 Space News .
CHIP TECH
Building a better bowtie
by Staff Writers
Rehovot, Israel (SPX) Jul 07, 2016


This is a bowtie-shaped nanoparticle made of silver with a trapped semiconductor quantum dot (indicated by the red arrow). Image courtesy Weizmann Institute of Science. For a larger version of this image please go here.

Bowtie-shaped nanoparticles made of silver may help bring the dream of quantum computing and quantum information processing closer to reality. These nanostructures, created at the Weizmann Institute of Science and described recently in Nature Communications, greatly simplify the experimental conditions for studying quantum phenomena and may one day be developed into crucial components of quantum devices.

The research team led by Prof. Gilad Haran of Weizmann's Chemical Physics Department - postdoctoral fellow Dr. Kotni Santhosh, Dr. Ora Bitton of Chemical Research Support and Prof. Lev Chuntonov of the Technion-Israel Institute of Technology - manufactured two-dimensional bowtie-shaped silver nanoparticles with a minuscule gap of about 20 nanometers (billionths of a meter) in the center.

The researchers then dipped the "bowties" in a solution containing quantum dots, tiny semiconductor particles that can absorb and emit light, each measuring six to eight nanometers across. In the course of the dipping, some of the quantum dots became trapped in the bowtie gaps.

Under exposure to light, the trapped dots became "coupled" with the bowties - a scientific term referring to the formation of a mixed state, in which a photon in the bowtie is shared, so to speak, with the quantum dot. The coupling was sufficiently strong to be observed even when the gaps contained a single quantum dot, as opposed to several. The bowtie nanoparticles could thus be prompted to switch from one state to another: from a state without coupling to quantum dots, before exposure to light, to the mixed state characterized by strong coupling, following such exposure.

Therefore, the ability to control the coupling of quantum dots may one day be employed in the manufacture of switches for computing or encryption devices relying on quantum phenomena, that is, those operating at the level of photons and single quantum systems, such as atoms, molecules or quantum dots. Because such phenomena open up possibilities unavailable on the macroscopic scale - for example, performing multiple computations simultaneously - quantum devices are expected to be vastly more powerful than today's electronic computers and encryption systems.

Says Prof. Haran: "We've made a first step toward creating quantum switches using our coupling method. Much research needs to be done before the method can be incorporated into actual devices, but as a matter of principle, our system is relatively easy to generate and, most importantly, can function at room temperature. We are currently working to fabricate even smaller bowtie particles and to render the coupling stronger and reversible."

The Weizmann scientists managed to design their bowtie system thanks to advances in nanotechnology - including electron beam lithography, used to fabricate the bowties and to facilitate the introduction of quantum dots into their gaps - and the advent of computational programs providing data analysis that previously required a massive effort on the part of theoreticians.

They also relied on the recently improved understanding of electron oscillations triggered by light in metals, which constitute the physical source of the coupling between the bowtie nanoparticles and the quantum dots: Such oscillations are known to be strongest on the metal surface. In the new bowtie-shaped particles, the electromagnetic field generated by these oscillations is extremely concentrated because it is focused to the central, narrow portion of the bowtie, much as light is concentrated when focused into a narrow beam.

The high concentration ensures tight control over the coupling, and this control, in turn, is essential for potential future quantum applications. None of the systems built in the past to study quantum interactions between light and matter operated on such a small scale or were able to reduce experiments to the level of individual quantum dots, as was done in the Weizmann study.

Prof. Gilad Haran's research is supported by the Ilse Katz Institute for Material Sciences and Magnetic Resonance Research, which he heads; the Nancy and Stephen Grand Research Center for Sensors and Security, which he heads; the Henry Chanoch Krenter Institute for Biomedical Imaging and Genomics; the Carolito Stiftung; the Weston Nanophysics Challenge Fund; Mr. and Mrs. Antonio Villalon; and the Prof. Dov and Ziva Rabinovich Foundation. Prof. Haran is the incumbent of the Hilda Pomeraniec Memorial Professorial Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Weizmann Institute of Science
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Researchers develop key power-splitting component for terahertz waves
Providence RI (SPX) Jul 03, 2016
One of the most basic components of any communications network is a power splitter that allows a signal to be sent to multiple users and devices. Researchers from Brown University have now developed just such a device for terahertz radiation - a range of frequencies that may one day enable data transfer up to 100 times faster than current cellular and Wi-Fi networks. "One of the big thrust ... read more


CHIP TECH
Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

CHIP TECH
Curiosity Mars Rover Enters Precautionary Safe Mode

Scientists' Innovation Began With 'Wanting to Understand Why'

Opportunity finishing science investigations at the center of Marathon Valley

Moons of Mars probably formed by giant impact

CHIP TECH
Exploring inner space for outer space

Quantum technologies to revolutionize 21st century

Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

CHIP TECH
China to launch its largest carrier rocket later this year

China committed to peaceful use of outer space

China to launch second space lab Tiangong-2 in September

Upgraded "space shuttle bus" aboard new carrier rocket

CHIP TECH
Three astronauts blast off for ISS in upgraded Soyuz craft

Soyuz-FG to launch new crew to ISS fully assembled

Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

CHIP TECH
Russia to Continue Rocket Engine Supplies to US Under Existing Contracts

India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

CHIP TECH
Lush Venus? Searing Earth? It could have happened

Teenagers at Keele University Discover Possible New Exoplanet

A surprising planet with three suns

What Happens When You Steam a Planet

CHIP TECH
A little impurity makes nanolasers shine

Russian Scientists Propose Charging Satellites Using Land-Based Lasers

Penn chemists establish fundamentals of ferroelectric materials

New mid-infrared laser system could detect atmospheric chemicals









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.