Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















CHIP TECH
Breakthrough in spintronics
by Staff Writers
Wurzburg, Germany (SPX) Jul 21, 2017


Bismuthene film interrupted at a step in the silicon carbide substrate viewed through a scanning tunnelling microscope. The film areas inevitably end at the substrate step and a conducting edge channel (white) occurs. Credit Photo: Felix Reis

The material class of topological insulators is presently the focus of international solids research. These materials are electrically insulating within, because the electrons maintain strong bonds to the atoms. At their surfaces, however, they are conductive due to quantum effects.

What is more: The electron has a built-in compass needle, the spin, whose orientation is capable of transmitting information very efficiently. It is protected against scattering when moving through these surface channels. With these properties, topological insulators could make an old dream come true: direct spin-based data processing, the so-called spintronics.

Previous concepts only work in the refrigerator
Until now, however, there has been one major obstacle to using such surface channels for technical applications: "As the temperature of a topological insulator increases, all quantum effects are washed out and with them the special properties of the electrically conducting edges," Dr Jorg Schafer explains; he is a private lecturer at the Chair of Experimental Physics 4 of the University of Wurzburg.

For this reason, all known topological insulators have to be cooled to very low temperatures - usually down to minus 270 degrees Celsius - to be able to study the quantum properties of the edge channels. "Of course, such conditions are not very practicable for potential applications such as ultra-fast electronics or quantum computers," the physicist says.

A team of Wurzburg physicists has now presented an entirely new concept to elegantly bypass this problem. Members of the team included Professor Ralph Claessen and private lecturer Dr Jorg Schafer from the Chair of Experimental Physics IV and Professor Ronny Thomale, Professor Werner Hanke and Dr Gang Li from the Chair of Theoretical Physics I. The scientists have now published their results in the current issue of Science.

Targeted material design
The Wurzburg breakthrough is based on a special combination of materials: an ultra-thin film consisting of a single layer of bismuth atoms deposited on a silicon carbide substrate.

What makes this combination so special? "The crystalline structure of the silicon carbide substrate causes the bismuth atoms to arrange in a honeycomb geometry when depositing the bismuth film - very similar to the structure of the 'miracle material' graphene, which is made up of carbon atoms", Professor Ralph Claessen explains. Because of this analogy, the waver-thin film is called "bismuthene".

But it has one decisive difference compared to graphene: "Bismuthene forms a chemical bond to the substrate," Professor Ronny Thomale details. It plays a central role in the new concept to provide the material with the desired electronic properties. This is highlighted by computer-based modelling: "Whereas common bismuth is an electrically conductive metal, the honeycomb monolayer remains a distinct insulator, even at room temperature and far above," the physicist adds. To create this much desired initial situation artificially, the heavy bismuth atoms are ingeniously combined with the equally insulating silicon-carbide substrate.

Electron motorway on the edge
The electronic conduction channels come into play at the edge of a piece of bismuthene. This is where the metallic edge channels are located which are to be used for the data processing of the future. This has not only been concluded theoretically by the Wurzburg research team, it has also been proven in experiments using microscopic techniques.

In order to harness the edge channels for electronic components, it is however crucial that there is no short-circuit through the inside of the topological material or through the substrate. "Previous topological insulators required extreme cooling to assure this," Jorg Schafer explains. The new bismuthene concept makes this effort redundant: The distinct insulating behaviour of the film and the substrate eliminate any disturbing short-circuits.

The Wurzburg scientists believe that it is this step of making the material work at room temperature which will render the discovery interesting for potential applications under realistic conditions. "Such conduction channels are 'protected topologically'. This means they can be used to transmit information virtually without loss," Ralph Claessen says. This approach makes data transmission with few electron spins conceivable, the so-called spintronics. Therefore, the Wurzburg team expects great advances for efficient information technology.

Research paper

CHIP TECH
Harnessing hopping hydrogens for high-efficiency OLEDs
Fukuoka, Japan (SPX) Jul 14, 2017
Renewed investigation of a molecule that was originally synthesized with the goal of creating a unique light-absorbing pigment has led to the establishment of a novel design strategy for efficient light-emitting molecules with applications in next-generation displays and lighting. Researchers at Kyushu University's Center for Organic Photonics and Electronics Research (OPERA) demonstrated ... read more

Related Links
University of Wurzburg
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
In Gulf of Mexico, NASA Evaluates How Crew Will Exit Orion

Space Tourist From Asian Country to Travel to ISS in 2019

NASA Awards Mission Systems Operations Contract

ULA to launch Dream Chaser for cargo runs to ISS for Sierra Nevada

CHIP TECH
ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Aerojet Rocketdyne tests Advanced Electric Propulsion System

After two delays, SpaceX launches broadband satellite for IntelSat

Spiky ferrofluid thrusters can move satellites

CHIP TECH
Panorama Above 'Perseverance Valley'

Sol 1756: Closing time

Hubble sees Martian moon orbiting the Red Planet

Curiosity Mars Rover Begins Study of Ridge Destination

CHIP TECH
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

CHIP TECH
LISA Pathfinder: bake, rattle and roll

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

Korean Aerospace offices raided in anti-corruption probe

Iridium Poised to Make Global Maritime Distress and Safety System History

CHIP TECH
Nature-inspired material uses liquid reinforcement

Japanese engineers develop headset-less VR system

Spacepath Communications Announces Innovative Frequency Converter Systems

Signature analysis of single molecules using their noise signals

CHIP TECH
Eyes Wide Open for MASCARA Exoplanet Hunter

Ancient worm burrows offer insights into early 'ecosystem engineers'

Molecular Outflow Launched Beyond Disk Around Young Star

A New Search for Extrasolar Planets from the Arecibo Observatory

CHIP TECH
NASA's New Horizons Team Strikes Gold in Argentina

Juno spots Jupiter's Great Red Spot

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

New evidence in support of the Planet Nine hypothesis




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement